Independence and inverse domination in complete z-ary tree and Jahangir graphs

Résumé

This article includes different properties of the independence and domination (total domination, independent domination, co-independent domination) number of the complete z-ray root and Jahangir graphs. Also, the inverse domination number of these graphs of variant dominating sets (total dominating, independent dominating, co-independent dominating) is determined.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Essam El-Seidy, Ain Shams University

Department of Mathematics

Références

M. N. Al-Harere, A. A.Omran , Binary operation graphs, AIP conference proceeding Vol. 2086, Maltepe University, Istanbul, Turkey, 030008,31July -6August ,(2018). DOI: https://doi.org/10.1063/1.5095093

M. N. Al-Harere, A. A.Omran , On binary operation graphs, Boletim da Sociedade Paranaense de Matematica, Vol 38No 7, 59-67, (2020). DOI: https://doi.org/10.5269/bspm.v38i7.44282

M. A. Abbood, A. A. AL-Swidi, and A. A. Omran, Study of Some Graphs Types via. Soft Graph , ARPN Journal of Engineering and Applied Sciences, 14(Special Issue 8), pp. 10375-10379, (2019). DOI: https://doi.org/10.36478/jeasci.2019.10375.10379

B. Gayathri and S.Kaspar, Connected Co-Independence Domination of a Graph, Int.j.Contemp.Math.Sciences, 6(9), 423-429,(2011).

F. Harary, Graph Theory, Addison-Wesley, Reading Mass (1969). DOI: https://doi.org/10.21236/AD0705364

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs , Marcel Dekker, Inc., New York (1998).

D. A. Mojdeh and A. N. Ghameshlou,Domination in Jahangir Graph J2,m ,Int. J. Contemp. Math. Sciences, 2(24),1193–199, (2007). DOI: https://doi.org/10.12988/ijcms.2007.07122

T. A. Ibrahim and A. A. Omran,Restrained Whole Domination in Graphs , J. Phys.: Conf. Ser. 1879 (2021) 032029 DOI: https://doi.org/10.1088/1742-6596/1879/3/032029

A. A. Jabor.and A. A. Omran, Topological domination in graph theory, AIP Conference Proceedings 2334, 020010 (2021). DOI: https://doi.org/10.1063/5.0042840

E. Sampathkumar and H. B. Walikar, The Connected Domination Number of a Graph , J. Math. Phys. Sci., 13, 607-613, (1979).

N. D. Soner , B. V. Dhananjaya Murthy and G.Deepak, Total Co-Independence Domination of Graphs, Applied Mathematical Sciences, 6(131) 6545-6551, (2012).

A. A. Omran, M. N. Al-Harere,and Sahib Sh. Kahat, Equality co-neighborhood domination in graphs, Discrete Mathematics, Algorithms and Applications, (2021). DOI: https://doi.org/10.1142/S1793830921500981

A. A. Omran and T. A. Ibrahim, Fuzzy co-even domination of strong fuzzy graphs, Int. J. Nonlinear Anal. Appl. 12 No. 1, 727-734,(2021).

S. S. Kahat, A. A. Omran and M. N. Al-Harere, Fuzzy equality co-neighbourhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12 No. 2, 537-545,(2021).

S. H. Talib, A. A. Omran , and Y. Rajihy, Inverse Frame Domination in Graphs , IOP Conf. Ser.: Mater. Sci. Eng. 928 042024, (2020). DOI: https://doi.org/10.1088/1757-899X/928/4/042024

S. H. Talib, A. A. Omran , and Y. Rajihy, Additional Properties of Frame Domination in Graphs, J. Phys.: Conf. Ser. 1664 012026, ((2020). DOI: https://doi.org/10.1088/1742-6596/1664/1/012026

H. J. Yousif and A. A. Omran, Closed Fuzzy Dominating Set in Fuzzy Graphs, J. Phys.: Conf. Ser. 1879 (2021). DOI: https://doi.org/10.1088/1742-6596/1879/3/032022

H. J. Yousif and A. A. Omran, Some Results On The N-Fuzzy Domination in Fuzzy Graphs , J. Phys.: Conf. Ser. 1879 (2021). DOI: https://doi.org/10.1088/1742-6596/1879/3/032009

H. J. Yousif and A. A. Omran, Inverse 2- Anti Fuzzy Domination in Anti fuzzy graphs, IOP Publishing Journal of Physics: Conference Series 1818 (2021). DOI: https://doi.org/10.1088/1742-6596/1818/1/012072

Publiée
2022-12-26
Rubrique
Research Articles