Existence and multiplicity results for elliptic problems with Nonlinear Boundary Conditions and variable exponents
Résumé
By applaying the Ricceri's three critical points theorem, we show the existence of at least three solutions to the following elleptic problem:
\begin{equation*}
\begin{gathered}
-div[a(x, \nabla u)]+|u|^{p(x)-2}u=\lambda f(x,u), \quad
\text{in }\Omega, \\
a(x, \nabla u).\nu=\mu g(x,u), \quad \text{on } \partial\Omega,
\end{gathered}
\end{equation*}
where $\lambda$, $\mu \in \mathbb{R}^{+},$
$\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain of
smooth boundary $\partial\Omega$ and $\nu$ is the outward normal
vector on $\partial\Omega$. $p: \overline{\Omega} \mapsto
\mathbb{R}$, $a: \overline{\Omega}\times \mathbb{R}^{N} \mapsto
\mathbb{R}^{N},$ $f: \Omega\times\mathbb{R} \mapsto \mathbb{R}$
and $g:\partial\Omega\times\mathbb{R} \mapsto \mathbb{R}$ are
fulfilling appropriate conditions.
Téléchargements
Références
G. A. Afrouzi, S. Heidarkhani; Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal., 66 (2007), pp. 2281-2288.
S. N. Antontsev, J. F. Rodrigues; On stationary thermorheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), pp. 19-36.
G. Bonanno, P. Candito; Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80 (2003), pp. 424-429.
G. Bonanno, R. Livrea; Multiplicity theorems for the Dirichlet problem involving the pLaplacian, Nonlinear Anal., 54 (2003), pp. 1-7.
G. Bonanno, G. Molica Bisci, V. Rădulescu; Multiple solutions of generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems, Nonlinear Anal. Real World Appl., 12, (2011), pp. 2656-2665.
M. M. Boureanu, D. N. Udrea; Existence and multiplicity results for elliptic problems with p(.)-Growth conditions, Nonlinear Anal. Real World Appl., 14, (2013), pp. 1829-1844.
Y. Chen, S. Levine, R. Ran; Variable exponent , linear growth functionals in image restoration, SIAMJ. Appl. Math., 66 (2006), pp. 1383-1406.
X. L. Fan; Regularity of minimizers of variational integrals with p(x)-growth conditions, Ann. Math. Sinica, 17A(5)(1996), pp. 557-564.
X. L. Fan, X. Y. Han; Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , Nonlinear Anal., 59 (2004), pp. 173-188.
G. Fragnelli; Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. anal. Appl., 73 (2010), pp. 110-121.
X. L. Fan, D. Zhao; On the generalized orlicz-Sobolev space Wk,p(x) (Ω), J. Gancu Educ. College, 12(1) (1998), pp. 1-6.
P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen; The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal., 25 (2006), no. 3, pp. 205-222.
O. Kovácik, J. Rákosnik; On spaces Lp(x) and Wk,p(x) , Czechoslovak Math. J., 41(1991), pp. 592-618.
V. K. Le; On a sub-supersolution method for variational inequalities with Leary-Liones operator in variable exponent spaces, Nonlinear Anal., 71(2009) pp. 3305-3321.
L. Li, L. Ding, W.W. Pan; Existence of multiple solutions for a p(x)-biharmonic equation, Electronic Journal of Differential Equations, Vol. 2013(2013), No. 139, pp. 1-10.
Q. Liu; Existence of three solutions for p(x)-Laplacian equations, Nonlinear Anal., 68 (2008), pp. 2119-2127.
M. Mihăilescu; Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal., 67 (2007), 1419-1425.
B. Ricceri; Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling, 32 (2000), 1485-1494.
B. Ricceri; On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226.
B. Ricceri; A three critical points theorem revisited, Nonlinear Anal., 70 (2009), 3084-3089.
M. Ruzicka; Electrorheological Fluids: Modeling and Mathematical Theory, Springer-verlag, Berlin, 2002.
X. Shi, X. Ding; Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem, Nonlinear Anal., 70 (2009), 3715-3720.
J. Simon; Régularité de la solution d'une équation non linéaire dans RN , volume 665 of Lecture Notes in Math., Springer, Berlin, (1978), 205-227.
A. Zang, Y. Fu; Interpolation inequalities for derivatives in variable exponent LebesgueSobolev spaces, Nonlinear Anal., 69 (2008), 3629-3636.
V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).