The PCD Method on Composite Grid

  • Ahmed Tahiri University Mohammed I

Résumé

We introduce a discretization method of boundary value problems (BVP) in the case of the two dimensional diffusion equation on a rectangular mesh with refined zones. The method consists in representing the unknown distribution and its derivatives by piecewise constant distributions (PCD) on distinct meshes together
with an appropriate approximate variational formulation of the exact BVP on this piecewise constant distributions space. This method, named the PCD method, has the advantage of producing the most compact possible discrete stencil. Here, we analyze and prove the convergence of the PCD method and determine upper bounds on its convergence rate.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Ahmed Tahiri, University Mohammed I

Faculty of Sciences

Department of Mathematics and Informatics

Références

R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975).

J. P. Aubin, Approximation des espaces de distributions et ses opérateurs différentiels, Bull. Soc. Math. France, 12 (1967), 1-139.

J. P. Aubin, Behavior of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods, Ann. Scuola N. Sup. Pisa, 21 (1967), 599-637.

J. P. Aubin, Approximation of Elliptic Boundary-Value Problems, Wiley-Interscience, New York, (1972).

R. E. Bank and D. J. Rose, Some error estimates for the box method, SIAM J. Num. Anal. 24 (1987), 777-787.

R. Beauwens, Forgivale variational crimes, Lecture Notes in Computer Science, 2542 (2003), 3-11.

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, (1991).

Z. Cai, J. Mandel and S.McCormick, The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal. 28 (1991), 392-402.

Z. Cai and S. McCormick, On the accuracy of the finite volume element method for diffusion equations on composite grids, SIAM J. Numer. Anal. 27 (1990), 636-655.

J. Cea, Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier, 14 (1964), 345-444.

J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), 39-52.

R. E. Ewing, R. D. Lazarov and P. S. Vassilevski, Local refinement techniques for elliptic problems on cell-centred grid, I: Error analysis, Math. Comp. 56 (1991), 437-461.

T. Gallouet, R. Herbin and M. H. Vignal, Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions, SIAM J. Num. Anal. 37 (2000), 1935-1972.

V. Girault, Theory of a finite difference method on irregular networks, SIAM J. Num. Anal. 11 (1974), 260-282.

A. Tahiri, A compact discretization method for diffusion problems with local mesh refinement, PhD thesis, Service de Métrologie Nucléaire, ULB, Brussels, Belgium, September (2002).

A. Tahiri, The PCD method, Lecture Notes in Computer Science, 2542 (2003), 563-571.

A. Tahiri, Local mesh refinement with the PCD method, Adv. Dyn. Syst. Appl. 8(1) (2013), 124-136.

R. Temam, Analyse Numérique, Presses Univ. de France, Paris, (1970).

P. S. Vassilevski, S. I. Petrova and R. D. Lazarov, Finite difference schemes on triangular cell-centred grids with local refinement, SIAM J. Sci. Stat. Comput. 13 (1992), 1287-1313.

M. H. Vignal, Schémas volumes finis pour des équations elliptiques ou hyperboliques avec conditions aux limites, convergence et estimations d’erreur, Thèse de Doctorat, ENS de Lyon, France, (1997).

A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM J. Num. Anal. 25 (1988), 351-375.

Publiée
2015-06-29
Rubrique
Articles