(Jordan) derivation on amalgamated duplication of a ring along an ideal
Résumé
Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$. In this paper, we characterize $A\bowtie I$ over which any (resp. minimal) prime ideal is invariant under any derivation provided that A is semiprime. When A is noncommutative prime, then $A\bowtie I$ is noncommutative semiprime (but not prime except if I = (0)). In this case, we prove that any map of $A\bowtie I$ which is both Jordan and Jordan triple derivation is a derivation.
Téléchargements
Références
Beidar, K. I. and Mikhalev, A. V., Orthogonal completeness and minimal prime ideals, Trudy Sem. Petrovski 10, 227-234, (1984).
Beidar, K. I. and Mikhalev, A. V., Orthogonal completeness and algebraic systems, Uspekhi Mat. Nauk 40(6), 79-115, (1985). (in Russian) https://doi.org/10.1070/RM1985v040n06ABEH003702
Bergen, J., Automorphic-differential identities in rings, Proc. Amer. Math. Soc. 106, 297-305, (1989). https://doi.org/10.1090/S0002-9939-1989-0967482-3
Bresar, M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104(4), 1003-1006, (1988). https://doi.org/10.1090/S0002-9939-1988-0929422-1
Bresar, M., Jordan mappings of semiprime rings, J. Algebra 127, 218-228, (1989). https://doi.org/10.1016/0021-8693(89)90285-8
Bresar, M. and Vukman, J., Jordan (θ, φ)-derivations, Glasnik Matematicki 26(46), 13-17, (1991).
Chuang, C. L. and Lee, T. K., Invariance of minimal prime ideals under derivations, Proc. Amer. Math. Soc. 113, 613-616, (1991). https://doi.org/10.1090/S0002-9939-1991-1072332-2
D'Anna, M., A construction of Gorenstein rings, J. Algebra 306(6), 507-519, (2006). https://doi.org/10.1016/j.jalgebra.2005.12.023
D'Anna, M. and Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3), 443-459, (2007). https://doi.org/10.1142/S0219498807002326
D'Anna, M. and Fontana, M., The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45(2), 241-252, (2007). https://doi.org/10.1007/s11512-006-0038-1
Goodearl, K. R. and Warfield Jr., R. B., Primitivity in differential operator rings, Math. Z.180, 503-523, (1982). https://doi.org/10.1007/BF01214722
Herstein, I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104-1110, (1957). https://doi.org/10.1090/S0002-9939-1957-0095864-2
Letzter, G., Derivations and nil ideals, Rend. Circ. Mat. Palermo 37(2), 174-176, (1988). https://doi.org/10.1007/BF02844521
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).