Applications of the Jack's lemma for the meromorphic functions at the boundary
Résumé
In this paper, a boundary version of the Schwarz lemma for the class $\mathcal{% N(\alpha )}$ is investigated. For the function $f(z)=\frac{1}{z}% +a_{0}+a_{1}z+a_{2}z^{2}+...$ defined in the punctured disc $E$ such that $% f(z)\in \mathcal{N(\alpha )}$, we estimate a modulus of the angular derivative of the function $\frac{zf^{\prime }(z)}{f(z)}$ at the boundary point $c$ with $\frac{cf^{\prime }(c)}{f(c)}=\frac{1-2\beta }{\beta }$. Moreover, Schwarz lemma for class $\mathcal{N(\alpha )}$ is given.Téléchargements
Références
Boas, H. P., Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117, 770-785, (2010). https://doi.org/10.4169/000298910x521643
Chelst, D., A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129, 3275-3278, (2001). https://doi.org/10.1090/S0002-9939-01-06144-5
Dubinin, V. N., The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122, 3623-3629, (2004). https://doi.org/10.1023/B:JOTH.0000035237.43977.39
Dubinin, V. N., Bounded holomorphic functions covering no concentric circles, J. Math. Sci. 207, 825-831, (2015).
https://doi.org/10.1007/s10958-015-2406-5
Golusin, G. M., Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
Jack, I. S., Functions starlike and convex of order , J. London Math. Soc. 3, 469-474, (1971). https://doi.org/10.1112/jlms/s2-3.3.469
Jeong, M., The Schwarz lemma and its applications at a boundary point, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21, 275-284, (2014).
Jeong, M., The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18, 219-227, (2011). https://doi.org/10.7468/jksmeb.2011.18.3.275
Krantz , S. G and Burns, D. M., Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7, 661-676, (1994). https://doi.org/10.2307/2152787
Mateljevic, M., Hyperbolic geometry and Schwarz lemma, ResearchGate 2016.
Mateljevic, M., Schwarz lemma, the Carath'eodory and Kobayashi Metrics and Applications in Complex Analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor 1-12, (2016).
Mateljevic, M., Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25, 155-164, (2003).
Mateljevic, M., Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate, 2015.
Osserman, R., A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128, 3513-3517, (2000).
https://doi.org/10.1090/S0002-9939-00-05463-0
Ornek, B. N., Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50, 2053-2059, (2013). https://doi.org/10.4134/BKMS.2013.50.6.2053
Ornek, B. N. and Akyel, T., Some results a certain class of holomorphic functions at the boundary of the unit disc, 2nd International Conference of Mathematical Sciences (ICMS 2018) 31 July-06 August 2018, Istanbul, Turkey. https://doi.org/10.1063/1.5095115
Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).