A novel fractional-order approach for modelling glucose regulation with meal spikes and periodic noise

Résumé

In this work, we develop a novel fractional order model for glucose-insulin-lactate dynamics in diabetic patients, incorporating both time-varying noise and meal-induced glucose spikes to enhance the realism of the system. This framework is about non-linear fractional differential equations that capture the chaotic behaviour of glucose regulation in the presence of noise and periodic fluctuations. To simulate real-world conditions, time-varying noise is introduced as physiological variability, including noise levels that fluctuate based on circadian rhythms and metabolic processes. In addition, we introduce meal spikes as a sudden increase in glucose levels, reflecting the physiological response to food intake. The glucose surge is modelled using a Gaussian function, with intensity and duration adjustable to simulate different meal patterns. The proposed model successfully captures the complex, real-world behaviour of glucose metabolism, providing insights into the effectiveness of control strategies under realistic conditions. From this approach, we offer a more comprehensive representation of the metabolic control system in diabetic patients and provide a practical method to examine intervention strategies.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Chen, C.-L., Tsai, H.-W., and Wong, S.-S., Modeling the physiological glucose–insulin dynamic system on diabetics, J. Theor. Biol., 265(3), 314–322, (2010).

Hovorka, R., Kumareswaran, K., Harris, J., Allen, J. M., Elleri, D., Xing, D., Kollman, C., Nodale, M., Murphy, H. R., Dunger, D. B., et al., Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies, BMJ, 342, (2011).

N’Doye, I., Voos, H., Darouach, M., Schneider, J. G., and Knauf, N., Static output feedback stabilization of nonlinear fractional-order glucose-insulin system, Proc. 2012 IEEE-EMBS Conf. Biomed. Eng. Sci., 589–594, (2012).

Bequette, B. W., Challenges and recent progress in the development of a closed-loop artificial pancreas, Annu. Rev. Control, 36(2), 255–266, (2012).

N’Doye, I., Voos, H., Darouach, M., Schneider, J. G., and Knauf, N., An unknown input fractional-order observer design for fractional-order glucose-insulin system, Proc. 2012 IEEE-EMBS Conf. Biomed. Eng. Sci., 595–600, (2012).

Ghorbani, M., and Bogdan, P., A cyber-physical system approach to artificial pancreas design, Proc. 2013 Int. Conf. Hardware/Software Codesign Syst. Synth. (CODES+ISSS), 1–10, (2013).

Craven, S., Whelan, J., and Glennon, B., Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller, J. Process Control, 24(4), 344–357, (2014).

Cho, Y., Kim, I., and Sheen, D., A fractional-order model for MINMOD millennium, Math. Biosci., 262, 36–45, (2015).

Heydarinejad, H., and Delavari, H., Fractional order back stepping sliding mode control for blood glucose regulation in type I diabetes patients, Theory Appl. Non-Integer Order Syst., Zakopane, Poland, 187–202, (2016).

Oviedo, S., Vehı, J., Calm, R., and Armengol, J., A review of personalized blood glucose prediction strategies for T1DM patients, Int. J. Numer. Meth. Biomed. Eng., 33(6), e2833, (2017).

Shabestari, P. S., Panahi, S., Hatef, B., Jafari, S., and Sprott, J. C., A new chaotic model for glucose-insulin regulatory system, Chaos, Solitons & Fractals, 112, 44–51, (2018).

Heydarinejad, H., Delavari, H., and Baleanu, D., Fuzzy type-2 fractional backstepping blood glucose control based on sliding mode observer, Int. J. Dyn. Control, 7, 341–354, (2019).

Paiva, H. M., Keller, W. S., and da Cunha, L. G. R., Blood-glucose regulation using fractional-order PID control, J. Control Autom. Electr. Syst., 31(1), 1–9, (2020).

Mu˜noz-Pacheco, J. M., Posadas-Castillo, C., and Zambrano-Serrano, E., The effect of a non-local fractional operator in an asymmetrical glucose-insulin regulatory system: Analysis, synchronization and electronic implementation, Symmetry, 12(9), 1395, (2020).

Ivanov, P. C., The new field of network physiology: building the human physiolome, Front. Netw. Physiol., (2021).

Fernandez-Carreon, B., Mu˜noz-Pacheco, J. M., Zambrano-Serrano, E., and Felix-Beltran, O. G., Analysis of a fractional-order glucose-insulin biological system with time delay, Chaos Theory Appl., 4(1), 10–18, (2022).

Askari, M. R., Developing Adaptive and Predictive Modules for the Second Generation of Multivariable Insulin Delivery System for People with Type-1 Diabetes, PhD thesis, Illinois Institute of Technology, (2023).

Saleem, O., and Iqbal, J., Complex-order PID controller design for enhanced blood-glucose regulation in Type-I diabetes patients, Meas. Control, 56(9–10), 1811–1825, (2023).

Vijaya, J., Chandra, S., and Baghel, P., Diabetes disease prediction using various metaheuristic optimization algorithms, Proc. 2023 IEEE 8th Int. Conf. Convergence Technol. (I2CT), 1–6, (2023).

Batool, M., Farman, M., Ghaffari, A. S., Nisar, K. S., and Munjam, S. R., Analysis and dynamical structure of glucose insulin glucagon system with Mittage-Leffler kernel for type I diabetes mellitus, Sci. Rep., 14(1), 8058, (2024).

Kamat, V., and Sweet, I. R., Hypertonicity during a rapid rise in D-glucose mediates first-phase insulin secretion, Front. Endocrinol., 15, 1395028, (2024).

Ganguly, A., Churcher, N., Upasham, S., Dhamu, V., and Prasad, S., Sensor ecosystems for health self-monitoring: Focus on diabetes management, Org. Inorg. Mater. Based Sensors, 3, 1013–1054, (2024).

Alhazmi, M., Comparing the numerical solution of fractional glucose–insulin systems using generalized Euler method in sense of Caputo, Caputo–Fabrizio and Atangana–Baleanu, Symmetry, 16(7), 919, (2024).

Selma, B., Selma, B., Aboua¨ıssa, H., Chouraqui, S., Kadem, H., Mehdeb, D., and Elaffifi, M., Toward a model-free feedback control of blood glucose induced by meals for type-1 diabetics: In silico studies, Iran J. Comput. Sci., 7(2), 217–227, (2024).

Noshad, E., Toopchi, Y., Abbasi Nozari, H., Sadati Rostami, S. J., Castaldi, P., and Hedayati, S., A backstepping-based nonlinear controller for glucose-insulin system dynamics in type-1 diabetes patients, Int. J. Robust Nonlinear Control, 35(5), 1687–1704, (2025).

Nisar, K. S., Farman, M., Jamil, K., Jamil, S., and Hincal, E., Fractional-order PID feedback synthesis controller including some external influences on insulin and glucose monitoring, Alex. Eng. J., 113, 60–73, (2025).

Dagher, K. E., and Haggege, J., Development of a cognitive blood glucose–insulin control strategy design for a nonlinear diabetic patient model, Nonlinear Eng., 14(1), 20250135, (2025).

Nisar, K. S., and Farman, M., Investigation of fractional order model for glucose-insulin monitoring with PID and controllability, Scientific Reports, 15(1), 8128, (2025).

Igiri, C. P., and Shikaa, S., Monkeypox transmission dynamics using fractional disease informed neural network: A global and continental analysis, IEEE Access, (2025).

McCulloch, W. S., and Pitts, W., A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, 5, 115–133, (1943).

Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review, 65(6), 386, (1958).

Minsky, M., and Papert, S., An introduction to computational geometry, Cambridge Tiass., HIT, 479(480), 104, (1969).

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning representations by back-propagating errors, Nature, 323(6088), 533–536, (1986).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I., Attention is all you need, Adv. Neural Inf. Process. Syst., 30, (2017).

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. I., Machine learning applications in cancer prognosis and prediction, Computational and Structural Biotechnology Journal, 13, 8–17, (2015).

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 542(7639), 115–118, (2017).

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA, 316(22), 2402–2410, (2016).

Gassem, F., Zahir, A., Dawood, A., Almalahi, M., Ali, A., and Aldwoah, K., Mathematical analysis of modified blood glucose insulin model through fractal fractional operators, Scientific Reports, 15(1), 1–20, (2025).

Publiée
2025-10-02
Rubrique
Mathematics and Computing - Innovations and Applications (ICMSC-2025)