Strong convergence theorems for strongly monotone mappings in Banach spaces
Resumo
Let $E$ be a uniformly smooth and uniformly convex real Banach space and $E^*$ be its dual space. Suppose $A : E\rightarrow E^*$ is bounded, strongly monotone and satisfies the range condition such that $A^{-1}(0)\neq \emptyset$. Inspired by Alber \cite{b1}, we introduce Lyapunov functions and use the new geometric properties of Banach spaces to show the strong convergence of an iterative algorithm to the solution of $Ax=0$.
Downloads
Referências
M. O. Aibinu and O. T. Mewomo, Algorithm for Zeros of monotone maps in Banach spaces, Proceedings of Southern Africa Mathematical Sciences Association (SAMSA2016) Annual Conference, 21-24 November 2016, University of Pretoria, South Africa, 35-44, (2017).
Ya. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, In: Kartsatos AG (ed) Theory and applications of nonlinear operators of accretive and monotone type, Marcel Dekker, New York, 15-50, (1996).
Y. Alber and I. Ryazantseva, Nonlinear Ill Posed Problems of Monotone Type, Springer, London (2006).
F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc., 73, 875-882, (1967).
Y. Censor and R. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, 37, (4), 323-339, (1996).
C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc., 99, (2), 283-288, (1987).
C. E. Chidume, An approximation method for monotone Lipschitzian operators in Hilbert spaces, J. Aust. Math. Soc. Ser. Pure Math. Stat., 41, 59-63, (1986).
C. E Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lectures Notes in Mathematics, Springer Verlag Series, London, 1965, (2009), ISBN: 978-1-84882-189-7.
C. E. Chidume and C. O. Chidume, A convergence theorem for zeros of generalized Phiquasi-accretive mappings, Amer. Math. Soc., 134, (1), 243-251, (2005).
C. E. Chidume and A. Bashir,Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. App., 326, 960-973, (2007).
C. E. Chidume, A. U. Bello and B. Usman, Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical Banach spaces, SpringerPlus, 297, (4), (2015), DOI 10.1186/s40064-015-1044-1.
C. E. Chidume and N. Djitte, Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, Abstract and Applied Analysis, (2012), Article ID 681348.
C. E. Chidume and K. O. Idu, Approximation of zeros of bounded maximal monotone mappings, solutions of Hammerstein integral equations and convex minimization problems, Fixed Point Theory and Applications, 2016, (97), (2016), DOI 10.1186/s13663-016-0582-8.
I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Academic Publishers Group, Dordrecht, (1990).
K. Deimling, Nonlinear functional analysis, Springer, New York, (1985).
C. Diop, T. M. M. Sow, N. Djitte and C. E. Chidume, Constructive techniques for zeros of monotone mappings in certain Banach spaces, SpringerPlus, 383, (4), (2015), DOI 10.1186/s40064-015-1169-2.
S. Kamimura and W. Takahashi, Strong convergence of proximal-type algorithm in Banach space, SIAMJ Optim., 13, (3), 938-945, (2002).
R. I. Kacurovskii, On monotone operators and convex functionals, Uspekhi Mat. Nauk., 15, 213-215, (1960).
K. Kido, Strong convergence of resolvents of monotone operators in Banach spaces, Proc. Am. Math. Soc. 103 (3), 755-758, (1988).
B. T. Kien, The normalized duality mappings and two related characteristic properties of a uniformly convex Banach space, Acta Mathematica Vietnamica, 27, (1), 53-67, (2002).
B. Martinet, Regularisation ´ din´equations variationnelles par approximations successives, 4, 154-158, (1970).
G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29, 341-346, (1962).
A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim. 47 (2), 45-52, (2010).
D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Editura Academiae, Bucharest, Romania, (1978).
S. Reich, A weak convergence theorem for the alternating method with Bregman distances, In: A.G, Kartsatos (Ed.), Theory and Applications of nonlinear operators of accretive and monotone type, Lecture Notes Pure Appl. Math., Dekker, New York, 178, 313-318, (1996).
R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149, 75-88, (1970).
H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(12), 1127-1138, (1991).
H. K. Xu, Iterative algorithms for nonlinear operators, Journal of the London Mathematical Society II, 66, 1, 240-256, (2002).
Z. B. Xu and G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157, 189-210, (1991).
C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl. 95, 344-374, (1983).
E. H. Zarantonello, Solving functional equations by contractive averaging, Technical Report 160. Madison, Wisconsin: U.S. Army Mathematics Research Center, (1960).
Zegeye, H: Strong convergence theorems for maximal monotone mappings in Banach spaces. J. Math. Anal. Appl. 343, 663-671 (2008).
Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).
C. M. Dafermos, C. M., An abstract Volterra equation with application to linear viscoelasticity. J. Differential Equations 7, 554-589, (1970).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).