Multiple solutions for a class of bi-nonlocal problems with nonlinear Neumann boundary conditions

  • Ghasem A. Afrouzi University of Mazandaran
  • Z. Naghizadeh University of Science and Technology of Mazandaran
  • Nguyen Thanh Chung Quang Binh University

Resumo

In this paper, we are interested in a class of bi-nonlocal problems with nonlinear Neumann boundary conditions and sublinear terms at infinity. Using $(S_+)$ mapping theory and variational methods, we establish the existence of at least two non-trivial weak solutions for the problem provied that the parameters are large enough. Our result complements and improves some previous ones for the superlinear case when the Ambrosetti-Rabinowitz type conditions are imposed on the nonlinearities.

Downloads

Não há dados estatísticos.

Referências

Ambrosetti, A., Rabinowitz, P. H., Dual variational methods in critical points theory and applications, J. Funct. Anal. 4, 349-381, (1973). https://doi.org/10.1016/0022-1236(73)90051-7

Avci, M., Cekic, B., Mashiyev, R. A., Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory, Math. Methods Appl. Sci. 34 (14), 1751-1759, (2011). https://doi.org/10.1002/mma.1485

Bonanno, G., Candito, P., Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, J. Differential Equations. 244, 3031-3059, (2008). https://doi.org/10.1016/j.jde.2008.02.025

Bonanno, G., Bisci, G. M., Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Boundary Value Problems. 2009, 1-12, (2009). https://doi.org/10.1155/2009/670675

Brezis, H., Analyse fonctionnelle: theorie et applications, Masson, Paris, 1992.

Chung, N. T., Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Variables and Elliptic Equations. 58 (12), 1637-1646, (2013). https://doi.org/10.1080/17476933.2012.701289

Chung, N. T., Toan, H.Q., On a class of degenerate nonlocal problems with sign-changing nonlinearities, Bull. Malays. Math. Sci. Soc. 37 (4), 1157-1167, (2014).

Colasuonno, F., Pucci, P., Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations, Nonlinear Anal. (TMA). 74, 5962-5974, (2011). https://doi.org/10.1016/j.na.2011.05.073

Correa, F. J. S. A., Costa, A. C. dos R., On a bi-nonlocal p(x)-Kirchhoff equation via Krasnoselskii's genus, Math. Methods Appl. Sci. 38 (1), 87-93, (2015). https://doi.org/10.1002/mma.3051

Dai, G., Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian. Applicable Analysis. 92 (1), 191-210, (2013). https://doi.org/10.1080/00036811.2011.602633

Fan, X., On nonlocal p(x)- Laplacian Dirichlet problems , Nonlinear Anal. 72, 3314-3323, (2010). https://doi.org/10.1016/j.na.2009.12.012

Guo, E., Zhao, P., Existence and multiplicity of solutions for nonlocal p(x)-Laplacian equations with nonlinear Neumann boundary conditions, Boundary Value Problems. 2012:1, 1-11, (2012). https://doi.org/10.1186/1687-2770-2012-1

Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Moradi, S., Variational approaches to impulsive elastic beam equations of Kirchhoff type, Complex Variables and Elliptic Equations. 61 (7), 931-968, (2016). https://doi.org/10.1080/17476933.2015.1131681

Heidarkhani, S., De Araujo, A. L. A., Afrouzi, G. A., Moradi, S., Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nach. 291 (2-3), 326-342, (2018). https://doi.org/10.1002/mana.201600425

Kirchhoff, G., Mechanik, Teubner, Leipzig, Germany, 1883.

Li, Q., Young, Z., Existence of multiple solutions for a p-Kirchhoff problem with the non-linear boundary condition, Appl. Anal., to appear, https://doi.org/10.1080/00036811.2017.1395859

Ni, W. M., Serrin, J., Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (suppl.) 8. 171-185, (1985).

Ni, W. M., Serrin, J., Existence and non-existence theorems for ground states for quasilinear partial differential equations, Att. Conveg. Lincei. 77, 231-257, (1985).

Struwe, M., Variational Methods, Second edition, Springer- Verlag, 2008.

Wang, W. B., Tang, W., Infinitely many solutions for Kirchhoff type problems with nonlinear Neumann boundary conditions, Electron. J. Diff. Equ. 2016 (188), 1-9, (2016).

Yucedag, Z., Avci, M., Mashiyev, R. On an elliptic system of p(x)-Kirchhoff-type under Neumann boundary condition, Mathematical Modelling and Analysis. 17(2), 161-170, 2012. https://doi.org/10.3846/13926292.2012.655788

Publicado
2021-12-18
Seção
Artigos