The algebraic face of the Alexandro one point compatication
Resumo
We give a characterization, in algebraic terms, of the Alexandroff one point compactication of a locally compact Hausdorff space. In fact, we prove that if (X, T) is a locally compact Hausdorff space, then (X', T') point compactication if and only if T is a maximal ideal of T'.
Downloads
Referências
Barrıa, S. and Vielma, J., Topologies as Semirings: Prime Spectrum and an Application of the Stone Duality Theorem, Master Thesis, Universidad de Concepcion, Chile (2016).
Dedekind, R., Uber die Theorie der Ganzen Algebraiscen Zahlen , Supplement XI to P.G. Lejeune Dirichlet: Vorlesung Uber Zahlentheorie, Aufl., Druck und Verlag, Braunschweig 4, (1894).
Golan, J., Semirings and their Applications, Kluwer Academic Publisher, (2010).
Guale, A. and Vielma, J., The algebraic face of the Collatz conjecture, Preprint (2019).
Munkres, J., Topologıa, Prentice Hall, New Jersey, United States (2002).
Vandiver, H., Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40, 914-920, (1934). https://doi.org/10.1090/S0002-9904-1934-06003-8
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
Escuela Superior Politécnica del Litoral
Grant numbers FCNM-09-2017