Derivatives with respect to horizontal and vertical lifts of the deformed complete lift metric G_{f} on tangent bundle.
Resumen
In this paper, we define the deformed complete lift metric G_{f} on tangent bundle, which is completely determined by its action on vector fields of type X^{H} and ω^{V}. Later, we obtain the covarient and Lie derivatives applied to the deformed complete lift metric G_{f} with respect to the horizontal and vertical lifts of vector fields, respectively.
Descargas
Citas
M. A. Akyol, Metallic maps between metallic Riemannian manifolds and constancy of certain maps, Honam J. of Math., 41(2), (2019), 343-356.
M. A. Akyol and B. Sahin, Conformal semi-invariant Riemannian maps to Kaehler manifolds, Revista De la Union Matematica Argentina, 60 (2), (2019), 459-468. https://doi.org/10.33044/revuma.v60n2a12
H. Cayır and K. Akdag, Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Math. Sci., 4 (4), (2016), 42-50. https://doi.org/10.20852/ntmsci.2016422036
H. Cayır and G. Koseoglu, Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to XC and XV on Tangent Bundle T(M), New Trends in Math. Sci., 4 (1), (2016), 153-159. https://doi.org/10.20852/ntmsci.2016115657
P. Dombrowski, On the geometry of the tangent bundles, J Reine Angew Math., 210, (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73
A. Gezer and M. Ozkan, Notes on the tangent bundle with deformed complete lift metric, 38, (2014), 1038-1049. https://doi.org/10.3906/mat-1402-30
b. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math., 3, (2010), 437-447. https://doi.org/10.2478/s11533-010-0023-6
B. Sahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56, (2013), 173-183. https://doi.org/10.4153/CMB-2011-144-8
A. A. Salimov, Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
S. Sasaki, On the diferential geometry of tangent bundles of Riemannian manifolds, Tohoku Math J., 10, (1958), 338-358. https://doi.org/10.2748/tmj/1178244668
K. Yano and S. Ishihara, Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker, 1973.
Derechos de autor 2022 Boletim da Sociedade Paranaense de Matemática

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).