CARACTERIZAÇÃO BROMATOLÓGICA DE SILAGENS DE CANA-DE-AÇÚCAR COM DIFERENTES TEORES DE BENZOATO DE SÓDIO

Heinzen Junior, C.¹; Fioravanti A. S; Trolegi, L. L.; Corletto, N. L¹; Calixto O. P. P.¹; Bumbieris Junior V. H.¹; **Lisboa F. G.**¹; Massaro Junior, F. L.; Ribeiro M. C. A; ¹Departamento de Zootecnia, Universidade Estadual de Londrina, Paraná, Brasil.

Produção e sustentabilidade

Palavras-chave: Conservação de forragens, fermentação alcoólica, aditivo químico.

Introdução

A cana-de-açúcar é um alimento muito utilizado na alimentação de ruminantes. Apesar do alto teor de fibras, esta cultura ganhou maior enfoque na produção animal devido ao fato de possuir alta produtividade (80 a 120 t/ha; SILVA, 1993). Porém, possui algumas desvantagens, como o baixo teor de proteínas e lipídeos, alta quantidade de fibras de baixa digestibilidade, alto teor de carboidratos de rápida fermentação no rúmen e ausência de amido, assim, consequentemente, baixo consumo de matéria seca.

A ensilagem da cana-de-açúcar apresenta grande problema devido à alta taxa de degradação alcoólica por característica de sua fauna epifítica, que é composta por leveduras. O benzoato de sódio (BS) é um sal proveniente do ácido benzoico, sendo caracterizado por um agente bactericida e fungicida muito utilizado na conservação de alimentos para humanos. Nesse contexto, quanto mais baixo o potencial hidrogeniônico (pH) do alimento a ser conservado, menor é a concentração de ácido benzoico necessária para a ação conservante.

Objetiva-se avaliar a dosagem do aditivo necessária para conter a fermentação alcoólica e manter as características bromatológicas da planta após a ensilagem.

Material e métodos

O experimento foi conduzido na Fazenda Escola da Universidade Estadual de Londrina e no Laboratório de Análise de Alimentos e Nutrição Animal da mesma universidade.

A cana-de-açúcar foi picada em aproximadamente 2,0 cm. Após a picagem, o material foi misturado com o benzoato de sódio nas seguintes proporções 0,0; 0,25; 0,50; 0,75 e 1,0% da matéria verde. Os cinco teores de aditivos foram distribuídos em 20 baldes de 4 litros, 4 unidades por teor de aditivo (aproximadamente 4 kg de material picado por unidade). A silagem foi compactada manualmente e após o preenchimento dos baldes, os mesmos foram vedados hermeticamente.

A abertura dos mini-silos foi realizada com aproximadamente 30 dias após a vedação, e posteriormente, as amostras foram coletadas para serem submetidas às análises bromatológicas segundo Mizubuti et al. (2009).

Os dados obtidos foram submetidos a análise de regressão, segundo um delineamento inteiramente casualizado com cinco nível de 5% de significância.

Resultados e Discussão

Tabela 1. Composição bromatológica e fracionamento de carboidratos das silagens de cana-de-açúcar com diferentes teores de benzoato de sódio.

	Silagens					- CV	
	Controle	BS 0,25%	BS 0,50%	BS 0,75%	BS 1%	(%) ⁴	P-Valor (P<0,05) ⁵
Matéria Seca ¹	24,96	29,37	27,17	26,03	26,78	4,56	24,96904 + 15,96988x - 30,56571x ² + 14,89333x ³ ;
Matéria orgânica ³	96,50	96,19	97,31	97,91	96,54	1,07	NS^2
Proteína Bruta ³	2,75	2,79	2,60	2,51	2,36	8,41	$2,75604 + 0,43321x - 1,82571x^2 + 1,0000x^3;$
Extrato Etéreo ³	0,51	0,50	0,17	0,53	0,49	43,66	NS^2
FDN ³	55,13	41,23	54,23	59,02	58,79	6,20	$55,13200 - 41,29500x + 113,0400x^2 - 68,08000x^3$
FDNcp ³	53,13	49,18	52,44	56,68	55,64	6,04	53,13568 - 38,53226x + 107,59143x ² - 66,54667x ³
FDA^3	26,70	24,80	26,83	28,42	27,55	6,89	NS^2
Lignina ³	2,94	1,91	2,65	3,60	3,14	20,33	2,94243 - 9,81143x + 26,97143x ² - 16,96000x ³
Hemicelulose ³	28,46	25,88	27,60	30,46	31,27	8,64	28,46554 - 23,20845x + 59,95429x ² - 33,93333x ³
Celulose ³	23,71	23,10	23,85	25,03	24,36	6,71	NS^2

¹ Em % de matéria natural; ² Não significativo; ³ Em % de matéria seca; ⁴ Coeficiente de variação; ⁵ Probabilidade. Fonte: elaboração do autor

Houve diferença singificativa para os teores de matéria seca (P<0,05; Tabela 1). De acordo com Siqueira et al. (2007) o processo de fermentação da silagem pode ocasionar perdas de matéria seca (MS), fazendo com que os teores de MS das silagens variem após a abertura dos silos. Essas vias de perdas podem ser por produção de efluentes e perda por água resultante de reações metabólicas (Mcdonald et al., 1991).

Houve diferença significativa para proteína bruta, o que pode significar menor perda de frações proteicas, geralmente degradadas por microrganismos aeróbicos facultativos, até as doses intermediárias do aditivo.

Os resultados de extrato etéreo, apresentaram como média 0,44% não foram significativos (P<0,05), porém são valores muito baixos para a planta.

A silagem de cana-de-açúcar contendo 0,25% de BS apresentou o menor valor de fibra em deteregente neutro (FDN; 41,23%). Silagens de melhor qualidade podem ser caracterizadas através de menores teores de fibra em detergente ácido (FDA) e lignina, pois a digestibilidade da MS é inversamente proporcional ao teor deste componente da parede celular (MERTENS, 1982). O aditivo teve influência sobre o teor de lignina na silagem, porém sem alterar a FDA.

Na Tabela 1 observa-se a variação da hemicelulose (P<0,05), sendo que nas doses mais altas do aditivo (0,75 e 1%) nota-se uma preservação nos teores de hemicelulose, provavelmente mostrando que o componente não foi fortemente hidrolisado no processo de fermentação.

Conclusões

O Benzoato de sódio pode influenciar a composição bromatológica da silagem colaborando com um melhor padrão fermentativo durante o processo de ensilagem da cana-de-açúcar. Sendo que o tratamento com 0,25% de BS apresentou melhores valores quanto as características bromatológicas da planta.

Referências

McDONALD, P.; HENDERSON, A. R.; HERON, S. J. E. The biochemistry of silage. 2. ed. **Marlow: Chalcomb Publishing**, 1991. 340 p.

MERTENS, D.R. Using neutral detergent fiber to formulate dairy rations. in: nutrition conference process gant conference for the feed industry, 1982, Athens. Proceedings... Athens: University of Georgia, 1982. p.116-126.

MIZUBUTI, Ivone Yurika et al.. **Métodos Laboratoriais de Avaliação de Alimentos**. Londrina: EDUEL, 2009. 228p.

SILVA, S. C. A cana-de-açúcar como alimento volumoso suplementar. In: Volumosos para bovinos. **FEALQ**, 1993. p. 59-74.

SIQUEIRA, G.R.; REIS, R.A.; SCHOCKEN-ITURRINO, R.P., et al. Perdas de silagens de cana-de-açúcar tratadas com aditivos químicos e bacterianos. **Revista Brasileira de Zootecnia**, Viçosa, v. 36, n. 6, 2007.