Escherichia coli: ANTIMICROBIAL SUSCEPTIBILITY MONITORING 2015 – 2018 IN BRAZIL
Resumen
Commensal bacteria, such as Escherichia coli, are involved in the transmission of resistance genes because it is widely distributed and constantly exposed to antibiotics. In this study, we examined multidrug resistance (MDR) in 282 collections of Escherichia coliisolates recovered from hospitalized animals in Brazil. A total of 2186 disc diffusion susceptibility tests were performed for 22 antibiotics. We verified 100% resistance for Lincomycin, metronidazole and penicillin and for other drugs we observed: sulfonamide (77%), amoxicillin (75%), cephalothin (70%), ampicillin (57%), tetracycline (52%), doxycycline (48%), amoxicillin plus clavulanic acid (47%), cephalexin (45%), sulfamethoxazole plus trimethoprim (41%), ciprofloxacin (40%), cefazolin (40%), trimethoprim (39%), norfloxacin (34%), enrofloxacin (34%), neomycin (33%), florfenicol (27%), ceftiofur (24%), chloramphenicol (20%) and gentamicin (17%). In addition, multidrug resistance was observed in 39% (151/282) of the samples tested. The study demonstrated that E. coli isolates showed resistance to antibiotics used in human medicine and, due to the ability to transfer resistance genes, is a public health issue. Multidrug resistance limits the drug choice for the treatment of E. coliinfections, suggesting that veterinarians seek antimicrobial alternatives.
Descargas
Citas
ALBUQUERQUE, R.D. Antimicrobianos como promotores do crescimento. Farmacologia aplicada à avicultura: boas práticas no manejo de medicamentos. 2005.
BACCARO, M.R.; MORENO, A.M.; CORRÊA, A.; FERREIRA, A.J.P.; CALDERARO, F.F. Resistência antimicrobiana de amostras de Escherichia coli isoladas de fezes de leitões com diarréia. Arquivos do Instituto Biológico. v. 69, n. 2, p. 15-18, 2002.
BARROS, M.R.; SILVEIRA, W.D.; ARAÚJO, J.M.D.; COSTA, E.P.; OLIVEIRA, A.A.D.F.; SANTOS, A.P.D.S.; MOTA, R.A. Resistência antimicrobiana e perfil plasmidial de Escherichia coli isolada de frangos de corte e poedeiras comerciais no Estado de Pernambuco. Pesquisa Veterinária Brasileira, 2012.
BAUER, A.W.; KIRBY, W.M.M.; SCHERRIS, J.C.; TURCK, M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. v45, p.493-496, 1976.
BRITO, B.G and TAGLIARI, K.C. Sensibilidade antimicrobiana de amostras de Escherichia coli isoladas de leitões lactentes com diarréia. Rev. Bras. Cienc. Vet., v.7, n.2, p.117-119, 2000.
CLSI. 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals VET01-S2. Second information supplement. Clinical and Laboratory Standards Institute, Wayne, PA.
COOKE, E.M.; BREADEN, A.; SHOOTER, R.A.; O'FARRELL, S. Antibiotic sensitivity of Escherichia coli isolated from animals, food, hospital patients, and normal people. The Lancet, v. 298, n. 7714, p. 8-10, 1971. .
EDWARDS, P.R. and EWING, W.H. Identification of Enterobacteriaceae, Burgess Publ. Co., Minneapolis, Minn, 1972.
HENQUELL, C.; CHANAL, C.; SIROT, D.; LABIA, R.; SIROT, J. Molecular characterization of 9 different types of mutants among 107 inhibitor-resistant TEM (IRT) from clinical isolates of Escherichia coli. Antimicrob. Agents Chemother, v. 39, n. 2, p. 427-430, 1995. .
IKUNO, A.A.; GAMA, N.M.S.Q.; GUASTALLI, E.A.L.; GUIMARÃES, M.B.; FERREIRA, V.C.A. Características de isolados de Escherichia coli provenientes de aves silvestres quanto a genes de virulência e resistência a antibióticos. In: Anais 38º Congresso Brasileiro de Medicina Veterinária (Conbravet.), Gramado, RS.
JACOBY, G.A. and MEDEIROS, A.A. More extended spectrum β-lactamases. Antimicrob. Agents Chemother, v. 35, n. 9, p. 1697, 1991.
LAXMINARAYAN, R.; SRIDHAR, D.; BLASER, M.; WANG, M.; WOOLHOUSE, M. Achieving global targets for antimicrobial resistance. Science, v. 353, n. 6302, p. 874-875, 2016. < DOI: 10.1126/science.aaf9286>.
LEIMBACH, A.; HACKER, J.; DOBRINDT, U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. In: Between pathogenicity and commensalism. Springer, Berlin, Heidelberg, 2013. p. 3-32. .
LEIMBACH, A.; HACKER, J.; DOBRINDT, U. Ocorrência, aspectos bacteriológicos e histopatológicos na colibacilose de bezerros. Pesquisa Agropecuária Brasileira, v. 26, n. 4, p. 555-564, 1991.
MAGIORAKOS, A.P.; SRINIVASAN, A.; CAREY, R.B.; CARMELI, Y.; FALAGAS, M. E.; GISKE, C.G.; PATERSON, D.L. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection, v. 18, n. 3, p. 268-281, 2012. .
MALINOWSKI, E.; LASSA, H.; MARKIEWICZ, H.; KAPTUR, M.; NADOLNY, M.; NIEWITECKI, W.; ZIĘTARA, J. Sensitivity to antibiotics of Arcanobacterium pyogenes and Escherichia coli from the uteri of cows with metritis/endometritis. The Veterinary Journal, v. 187, n. 2, p. 234-238, 2011. .
MATAMOROS, S.; VAN HATTEM, J.M.; ARCILLA, M.S.; WILLEMSE, N.; MELLES, D.C.; PENDERS, J.; SCHULTSZ, C. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Scientific Reports, v. 7, n. 1, p. 15364, 2017. .
MEHTA, S.C.; SAMANTA, M.; CHOW, D.C.; PALZKILL, T. Avoiding the carbapenem trap: KPC-2 β-lactamase sequence requirements for carbapenem hydrolysis. The FASEB Journal, v. 30, n. 1_supplement, p. 1083.20-1083.20, 2016.
NATARO, J.P. and KAPER, J.B. Diarrheagenic escherichia coli. Clinical microbiology reviews, v. 11, n. 1, p. 142-201, 1998. < DOI: 10.1128/CMR.11.1.142>.
National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS Documents M2-A8 and M100-S13. Wayne, PA, USA, 2003.
ONDERDONK, A.B.; LOUIE, T.J.; TALLY, F.P.; BARTLETT, J.G. Activity of metronidazole against Escherichia coli in experimental infra-abdominal sepsis. Journal of Antimicrobial Chemotherapy, v. 5, n. 2, p. 201-210, 1979. .
PIDDOCK, L.J.V. Does the use of antimicrobial agents in veterinary medicine and animal husbandry select antibiotic-resistant bacteria that infect man and compromise antimicrobial chemotherapy?. Journal of Antimicrobial Chemotherapy, v. 38, n. 1, p. 1-3, 1996. (DOI: 10.1093/jac/38.1.1>.
PORSE, A.; GUMPERT, H.; KUBICEK-SUTHERLAND, J.Z.; KARAMI, N.; ADLERBERTH, I.; WOLD, A.E.; SOMMER, M.O. Genome dynamics of Escherichia coli during antibiotic treatment: transfer, loss, and persistence of genetic elements in situ of the infant gut. Frontiers in cellular and infection microbiology, v. 7, p. 126, 2017. .
REESE, R. and BETTS, R.F. Manual de antibióticos. In: Manual de antibióticos. 1995.
REINTHALER, F.F.; POSCH, J.; FEIERL, G.; WÜST, G.; HAAS, D.; RUCKENBAUER, G.; MARTH, E. Antibiotic resistance of E. coli in sewage and sludge. Water research, v. 37, n. 8, p. 1685-1690, 2003. .
RIBEIRO, M.G.; COSTA, E.O.; LEITE, D.S.; LANGONI, H.; GARINO, J.F.; VICTÓRIA, C.; LISTONI, F.J.P. Fatores de virulência em linhagens de Escherichia coli isoladas de mastite bovina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, p. 724-731, 2006. .
RIBEIRO, M.G.;PINTO, J.P.D.A.N. Escherichia coli 0157: H7, de hambúrger, leite e outros gêneros alimentícios à colite hemorrágica e síndrome urêmico-hemolítica. Higiene Alimentar, v. 13, n. 66/67, p. 88-99, 1999.
VAN DEN BOGAARD, A.E.; LONDON, N.; DRIESSEN, C.A.G.G.; STOBBERINGH, E.E. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy, v. 47, n. 6, p. 763-771, 2001. .
VAN DUIJKEREN, E.; WOLFHAGEN, M.J.; BOX, A.T.; HECK, M.E.; WANNET, W.J.; FLUIT, A.C. Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerging infectious diseases. v. 10, n. 12, p. 2235, 2004. .
WHITE, D.G.; HUDSON, C.; MAURER, J.J.; AYERS, S.; ZHAO, S.; LEE, M.D.; SHERWOOD, J. Chloramphenicol and Florfenicol Resistance in Escherichia Coli of Characterization. Sci J of Ani and Vet Sci, v. 1, n. 1, p. 001-006, 2018.
WILLIAMS, J.D. β-lactamases and β-lactamase inhibitors. Inter. J. Antimicrob. Agents, 12: 3-7, 1999.
-0>.