Pseudomonas aeruginosa and Pseudomonas spp. isolated from fresh Minas cheeses in Rio de Janeiro

  • Newton Okuno Unirio
  • Isabela Freire Unirio
  • Cristiane Silva Unirio
  • Victor Marin Unirio

Resumo

Pseudomonas aeruginosa is an opportunistic pathogen among the most prevalent nosocomial microorganisms and is particularly relevant to the health of infants, children, and immunocompromised persons. P. aeruginosa is linked to gastroenteritis and causes the Shanghai fever with necrotizing enteritis and sepsis infants and children, and, albeit rare, necrotizing enteritis in adults. Cheeses with high moisture content are issues of concern to the health of that population as the already present pathogens can easily grow. In this work, P. aeruginosa and Pseudomonas spp. strains were found, respectively, in 04 (12.1%) and 19 (57.6%) of 33 samples of fresh Minas cheese, a traditional Brazilian cheese, acquired from May 2015 to January 2016 in Rio de Janeiro city. Antimicrobial susceptibility testing of 03 P. aeruginosa strains was performed with ticarcillin, ticarcillin-clavulanic acid, ceftazidime, cefepime, aztreonam, imipenem, meropenem, gentamicin, ciprofloxacin, and colistin. Although no resistance to these antimicrobials was found, good manufacturing and hygienic practices in dairy plants are paramount to ensure food safety and quality. Furthermore, surveillance of antibiotic resistance and opportunistic pathogens with resistance genes in the dairy chain is useful to control the spread of antibiotic resistance.

Downloads

Não há dados estatísticos.

Referências

AL-SHAMMARY, A. H. A. The effect of heat treatment, pH and osmotic pressure on viability of Pseudomonas aeruginosa isolated from raw dairy products in Baghdad B. International Journal of Advanced Research, v. 3, 3, p. 675–681, 2015. Available at: . Accessed: 08 May 2016.
ARSLAN, S.; EYI, A.; ÖZDEMIR, F. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. Journal of dairy science, v. 94, 12, p. 5851–6, 2011. DOI: 10.3168/jds.2011-4676.
BHATT, V. D. et al. Milk microbiome signatures of subclinical mastitis-affected cattle analysed by shotgun sequencing. Journal of Applied Microbiology, v. 112, 4, p. 639–650, 2012. DOI: 10.1111/j.1365-2672.2012.05244.x.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria No 146, de 07 de março de 1996. Aprova os Regulamentos Técnicos de Identidade e Qualidade dos Produtos Lácteos. Diário Oficial da União, Brasília, DF, 11 mar. 1996, Seção 1, p. 3977, 1996. Available at: . Accessed: 15 May 2015.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria No 352, de 4 de setembro de 1997. Regulamento Técnico para Fixação de Identidade e Qualidade do Queijo Minas Frescal. Diário Oficial da União, Brasília, DF, 08 set. 1997, Seção 1, p. 19684, 1997. Available at: . Accessed: 15 May 2015.
BRASIL. Agência Nacional de Vigilância Sanitária. Resolução - RDC no 12, de 02 de janeiro de 2001. Aprovar o REGULAMENTO TÉCNICO SOBRE PADRÕES MICROBIOLÓGICOS PARA ALIMENTOS. Diário Oficial da União, Brasília, DF, 10 jan. 2001, Seção 1, p. 45, 2001. Available at: . Accessed: 12 May 2015.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento – Secretaria de Defesa Agropecuária. Instrução Normativa no 62, de 26 de agosto de 2003. Oficializa os Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Diário Oficial da União, Brasília, DF, 18 set. 2003, Seção 1, p. 14, 2003. Available at: . Accessed: 15 May 2015.
BROWN, V. I.; LOWBURY, E. J. Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. Journal of clinical pathology, v. 18, 6, p. 752–756, 1965. DOI: 10.1136/jcp.18.6.752.
CALDERA, L. et al. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiology, v. 54, p. 142–153, 2016. DOI: 10.1016/j.fm.2015.10.004.
CAPODIFOGLIO, E. et al. Lipolytic and proteolytic activity of Pseudomonas spp. isolated during milking and storage of refrigerated raw milk. Journal of dairy science, v. 99, 7, p. 5214–5223, 2016. DOI: 10.3168/jds.2015-10453.
CARVALHO, P. L. N. et al. Research about Listeria sp., Salmonella sp. And Others Contamination Indicators to Milk’s and Cheese’s Samples Sale in the South of Minas Gerais State. Aust. J. Basic & Appl. Sci., v. 3, 4, p. 4422–4431, 2009. Available at: . Accessed: 24 May 2015.
CASTRO, M. S. R. Enterococcus spp. and Pseudomonas spp. isolated from environment processing of dairy products: identification, formation of multi-species biofilms and control of sanitizers. 2012. 225 p. Thesis (Doctorate of Philosophy in Food Technology) - School of Food Engineering, University of Campinas, Sao Paulo.
CHENG, Y. L. et al. Clinical Significance in Previously Healthy Children of Pseudomonas aeruginosa in the Stool. Pediatrics and Neonatology, v. 50, 1, p. 13–17, 2009. DOI: 10.1016/S1875-9572(09)60024-3.
CHOI, H. J. et al. Improved PCR for identification of Pseudomonas aeruginosa. Applied microbiology and biotechnology, v. 97, 8, p. 3643–51, 2013. DOI: 10.1007/s00253-013-4709-0.
CHUANG, C. H. et al. Pseudomonas aeruginosa-Associated Diarrheal Diseases in Children. Pediatric Infectious Disease Journal, v. 36, 12, p. 1119–1123, 2017. DOI: 10.1097/INF.0000000000001567.
CLETO, S. et al. Characterization of contaminants from a sanitized milk processing plant. PLoS ONE, v. 7, 6, p. e40189, 2012. DOI: 10.1371/journal.pone.0040189.
CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. CLSI document M100-S25. Clinical and Laboratory Standards Institute, Wayne, PA, 2015.
COSTA, D. et al. Nosocomial outbreak of Pseudomonas aeruginosa associated with a drinking water fountain. Journal of Hospital Infection, v. 91, 3, p. 271–274, 2015. DOI: 10.1016/j.jhin.2015.07.010.
COTON, M. et al. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiology, v. 29, 1, p. 88–98, 2012. DOI: 10.1016/j.fm.2011.08.020.
DECIMO, M.; SILVETTI, T.; BRASCA, M. Antibiotic Resistance Patterns of Gram-Negative Psychrotrophic Bacteria from Bulk Tank Milk. Journal of Food Science, v. 81, 4, p. M944–M951, 2016. DOI: 10.1111/1750-3841.13250.
FERNANDES, M. C. et al. Surto de mastite bovina causada por linhagens de Pseudomonas aeruginosa multirresistentes aos antimicrobianos [Outbreak of bovine mastitis caused by multiple drug resistant Pseudomonas aeruginosa strains]. Arq. Bras. Med. Vet. Zootec., v. 61, 3, p. 745–748, 2009. DOI: 10.1590/S0102-09352009000300031.
GANGEMI, A.; DURGAM, S.; GIULIANOTTI, P. C. Fulminant Necrotizing Enteritis after Revisional Roux-en-Y Gastric Bypass: A Rare Case and Review of the Literature. Surgical Infections Case Reports, v. 2, 1, p. 31–34, 2017. DOI: 10.1089/crsi.2017.0008.
GELLATLY, S. L.; HANCOCK, R. E. W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease, v. 67, 3, p. 159–173, 2013. DOI: 10.1111/2049-632X.12033.
GÓMEZ-ZORRILLA, S. et al. Prospective observational study of prior rectal colonization status as a predictor for subsequent development of Pseudomonas aeruginosa clinical infections. Antimicrobial agents and chemotherapy, v. 59, 9, p. 5213–9, 2015. DOI: 10.1128/AAC.04636-14.
GOULD, L. H.; MUNGAI, E.; BARTON BEHRAVESH, C. Outbreaks attributed to cheese: differences between outbreaks caused by unpasteurized and pasteurized dairy products, United States, 1998-2011. Foodborne pathogens and disease, v. 11, 7, p. 545–51, 2014. DOI: 10.1089/fpd.2013.1650.
GROSSO-BECERRA, M.-V. et al. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics, v. 15, 1, p. 318, 2014. DOI: 10.1186/1471-2164-15-318.
HAMOUDA, A.; VALI, L.; AMYES, S. G. B. Gram-Negative Non-Fermenting Bacteria from Food-Producing Animals are Low Risk for Hospital-Acquired Infections. Journal of Chemotherapy, v. 20, 6, p. 702–708, 2008. DOI: 10.1179/joc.2008.20.6.702.
HUNTER, C. A.; ENSIGN, P. R. An Epidemic of Diarrhea in a New-Born Nursery Caused by Pseudomonas aeruginosa. American Journal of Public Health and the Nations Health, v. 37, 9, p. 1166–1169, 1947. Available at: . Accessed: 24 August 2016.
İPEK, D.; DEMIREL ZORBA, N. N. Microbial load of white cheese process lines after CIP and COP: A case study in Turkey. LWT - Food Science and Technology, v. 90, January, p. 505–512, 2018. DOI: 10.1016/j.lwt.2017.12.062.
JOHNSON, E. A.; NELSON, J. H.; JOHNSON, M. Microbiological Safety of Cheese Made from Heat-Treated Milk, Part II. Microbiology. Journal of Food Protection, v. 53, 6, p. 519–540, 1990. DOI: 10.4315/0362-028X-53.6.519.
KERCKHOFFS, A. P. M. et al. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. Journal of Medical Microbiology, v. 60, 2, p. 236–245, 2011. DOI: 10.1099/jmm.0.022848-0.
KESKIN, D.; EKMEKÇI, S. Investigation of the Incidence of Pseudomonas sp. in Foods. Hacettepe J. Biol. & Chem., v. 35, 3, p. 181–186, 2007. Available at: . Accessed: 24 May 2015.
KOH, A. Y.; PRIEBE, G. P.; PIER, G. B. Virulence of Pseudomonas aeruginosa in a murine model of gastrointestinal colonization and dissemination in neutropenia. Infection and Immunity, v. 73, 4, p. 2262–2272, 2005. DOI: 10.1128/IAI.73.4.2262-2272.2005.
MACHADO, S. G. et al. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products. Frontiers in Microbiology, v. 8, p. 302, 2017. DOI: 10.3389/fmicb.2017.00302.
MARSHALL, J. C.; CHRISTOU, N. V; MEAKINS, J. L. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Annals of Surgery, v. 218, 2, p. 111–119, 1993. DOI: 10.1097/00000658-199308000-00001
MEIER, F. et al. Enterococci and pseudomonads as quality indicators in industrial production and storage of mozzarella cheese from raw cow milk. International Dairy Journal, v. 82, p. 28–34, 2018. DOI: 10.1016/j.idairyj.2018.02.010.
MERUSSI, G. D.; MAFFEI, D. F.; CATANOZI, M. P. L. M. Surtos de Gastroenterite relacionados ao consumo de laticínios no Estado de São Paulo no período de 2000 a 2010 [Outbreaks of gastroenteritis related to dairy products intake in the state of Sao Paulo from 2000 to 2010]. Alim. Nutr., v. 23, 4, p. 639–645, 2012. Available at: . Accessed: 30 May 2015.
MILANEZE, H. S. et al. Microbiological, chemical, physical, and proteolytic activities of raw milk after thermal processing. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 70, 5, p. 1625–1632, 2018. DOI: 10.1590/1678-4162-9662.
NUCERA, D. M. et al. Dissemination and Persistence of Pseudomonas spp. in Small-Scale Dairy Farms. Italian journal of food safety, v. 5, 2, p. 5652, 2016. DOI: 10.4081/ijfs.2016.5652.
NUNES, M. M.; MOTA, A. L. A. A.; CALDAS, E. D. Investigation of food and water microbiological conditions and foodborne disease outbreaks in the Federal District, Brazil. Food Control, v. 34, 1, p. 235–240, 2013. DOI: 10.1016/j.foodcont.2013.04.034.
ODUMOSU, B. T. et al. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources. SpringerPlus, v. 5, 1, p. 1381, 2016. DOI: 10.1186/s40064-016-3073-9.
OLIVEIRA PINTO, C. L. DE et al. Identificação De Bactérias Psicrotróficas Proteolíticas Isoladas De Leite Cru Refrigerado E Caracterização Do Seu Potencial Deteriorador [Identification of proteolytic psychrotrophic bacteria isolated from refrigerated raw milk and characterization of its spoilage potential]. Revista do Instituto de Laticínios Cândido Tostes, v. 70, 2, p. 105, 2015. DOI: 10.14295/2238-6416.v70i2.401.
PAGEDAR, A.; SINGH, J. Evaluation of antibiofilm effect of benzalkonium chloride, iodophore and sodium hypochlorite against biofilm of Pseudomonas aeruginosa of dairy origin. Journal of Food Science and Technology, v. 52, 8, p. 5317–5322, 2015. DOI: 10.1007/s13197-014-1575-4.
PENTEADO, F. D. et al. Shanghai Fever in a Healthy Infant: First Report in South America. The Pediatric Infectious Disease Journal, v. 37, 11, 2018. DOI: 10.1097/INF.0000000000002005
QUIGLEY, L.; MCCARTHY, R. et al. The microbial content of raw and pasteurized cow milk as determined by molecular approaches. Journal of dairy science, v. 96, 8, p. 4928–37, 2013. DOI: 10.3168/jds.2013-6688.
ROGUES, A.-M. et al. Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit. Journal of Hospital Infection, v. 67, 1, p. 72–78, 2007. DOI: 10.1016/j.jhin.2007.06.019.
SERRANO, I. et al. Antimicrobial resistance and genomic rep-PCR fingerprints of Pseudomonas aeruginosa strains from animals on the background of the global population structure. BMC Veterinary Research, v. 13, 1, p. 58, 2017. DOI: 10.1186/s12917-017-0977-8.
SHIMIZU, K. et al. Altered gut flora and environment in patients with severe SIRS. Journal of Trauma - Injury, Infection and Critical Care, v. 60, 1, p. 126–133, 2006. DOI: 10.1097/01.ta.0000197374.99755.fe.
SHOOTER, R. A. et al. Food and medicaments as possible sources of hospital strains of Pseudomonas aeruginosa. The Lancet, v. 293, 7608, p. 1227–1229, 1969. DOI: 10.1016/S0140-6736(69)92114-X.
SHUKLA, R. et al. Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis. Digestive Diseases and Sciences, v. 60, 10, p. 2953–2962, 2015. DOI: 10.1007/s10620-015-3607-y.
SPILKER, T. et al. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of clinical microbiology, v. 42, 5, p. 2074–9, 2004. DOI: 10.1128/jcm.42.5.2074-2079.2004
VALOT, B. et al. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated. PLOS ONE, v. 10, 5, p. e0126468, 2015. DOI: 10.1371/journal.pone.0126468.
VICTORICA, J. DE; GALVAN, M. Pseudomonas aeruginosa as an indicator of health risk in water for human consumption. Water science and technology : a journal of the International Association on Water Pollution Research, England, v. 43, 12, p. 49–52, 2001. Available at: . Accessed: 24 January 2017.
WELSH, M. A.; BLACKWELL, H. E. Chemical Genetics Reveals Environment-Specific Roles for Quorum Sensing Circuits in Pseudomonas aeruginosa. Cell Chemical Biology, v. 23, 3, p. 361–369, 2016. DOI: 10.1016/j.chembiol.2016.01.006.
WOLFGANG, M. C. et al. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, v. 100, 14, p. 8484–9, 2003. DOI: 10.1073/pnas.0832438100.
WORLD HEALTH ORGANIZATION (WHO). Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Geneva: World Health Organization, 2017. Available at: . Accessed: 10 August 2019.
ZABORINA, O. et al. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier. Annals of clinical microbiology and antimicrobials, v. 5, 1, p. 14, 2006. DOI: 10.1186/1476-0711-5-14.
ZHANG, Q. et al. A five-year review of Pseudomonas aeruginosa bacteremia in children hospitalized at a single center in southern China. International Journal of Infectious Diseases, v. 16, 8, p. e628–e632, 2012. DOI: 10.1016/j.ijid.2012.03.014.
ZHOU, Z. Y. et al. Sources of sporadic Pseudomonas aeruginosa colonizations/infections in surgical ICUs: Association with contaminated sink trap. Journal of Infection and Chemotherapy, v. 22, 7, p. 450–455, 2016. DOI: 10.1016/j.jiac.2016.03.016.
Publicado
2021-05-20
Como Citar
Okuno, N., Freire, I., Silva, C., & Marin, V. (2021). Pseudomonas aeruginosa and Pseudomonas spp. isolated from fresh Minas cheeses in Rio de Janeiro. Revista De Ciência Veterinária E Saúde Pública, 8(1), 012-027. https://doi.org/10.4025/revcivet.v8i1.51027
Seção
Artigos Originais