POTENTIAL THERAPIES FOR TREATMENT OF COVID-19

  • Beatriz Gasser
  • Ricardo Andres Ramirez Uscategui

Resumo

Since discovery of the novel coronavirus (SARS-CoV-2) in December of 2019, this viral pneumonia originated in Wuhan, China quickly spread around the world. This new disease, called COVID-19 can cause Acute Respiratory Distress Syndrome (ARDS) due to an uncontrolled inflammatory response like sepsis, that leads to multiple organ failure and even death. Several pharmacotherapeutics alternatives are being tested over the world, looking for most diverse drugs that might be able to fight the infection. The objective of this paper is to review the main pharmacotherapeutics techniques development, as remdesivir, chloroquine/hydroxychloroquine, lopinavir plus ritonavir, interferon-β, ivermectin, anticoagulants, convalescent plasma and vaccine, currently undergoing clinical trials in order to evaluate its effectiveness and safety to combat the COVID-19, presenting their characteristics, possible adverse effects and main scientific findings of its potential action. In conclusion, some therapies presented promising in-vitro results or in the treatment of some patients, nonetheless, multicentric blinded placebo controlled clinical trials are necessary to determine their effectiveness, safety, dosage, and best time point of treatment.

Downloads

Não há dados estatísticos.

Referências

ARABI, Y.; BALKHY, H.; HAJEER, A.H.; BOUCHAMA, A.; HAYDEN, F.G.; AL-OMARI, A.; AL-HAMEED, F.M.; TAHA, Y.; SHINDO, N.; WHITEHEAD, J.; MERSON, L.; ALJOHANI, S.; AL-KHAIRY, K.; CARSON, G.; LUKE, T.C.; HENSLEY, L.; AL-DAWOOD, A.; AL-QAHTANI, S.; MODJARRAD, K.; SADAT, M.; ROHDE, G.; LEPORT, C.; FOWLER, R. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springer Plus, v.4, n.1, p.1–8, 2015. .

CALY, L.; DRUCE, J.D.; CATTON, M.G.; JANS, D.A.; WAGSTAFF, K.M. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, v.178, p.1-4, 2020. .

CANGA, A.G.; PRIETO, A.M.S.; LIÉBANA, M.J.D.; MARTÍNEZ, N.F.; VEGA, M.S.; VIEITEZ, J.J.G. The pharmacokinetics and interactions of ivermectin in humans - A mini-review. AAPS Journal, v.10, n.1, p.42–46, 2008. .

CAO, B.; WANG, Y.; WEN, D.; LIU, W.; WANG, J.; FAN, G.; RUAN, L.; SONG, B.; CAI, Y.; WEI, M.; LI, X.; XIA, J.; CHEN, N.; XIANG, J.; YU, T.; BAI, T.; XIE, X.; ZHANG, L.; LI, C.; YUAN, Y.; CHEN, H.; LI, H.; HUANG, H.; TU, S.; GONG, F.; LIU, Y.; WEI, Y.; DONG, C.; ZHOU, F.; GU, X.; XU, J.; LIU, Z.; ZHANG, Y.; LI, H.; SHANG, L.; WANG, K.; LI, K.; ZHOU, X.; DONG, X.; QU, Z.; LU, S.; HU, X.; RUAN, S.; LUO, S.; WU, J., PENG, L.; CHENG, F.; PAN, L.; ZOU, J.; JIA, C.; WANG, J.; LIU, X.; WANG, S.; WU, X., GE, Q.; HE, J.; ZHAN, H.; QIU, F.; GUO, L.; HUANG, C.; JAKI, T.; HAYDEN, F.G.; HORBY, P.W.; ZHANG, D.; WANG, C. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, p.1–13, 2020. .

CHANDLER, R. E. Serious neurological adverse events after ivermectin-do they occur beyond the indication of onchocerciasis? American Journal of Tropical Medicine and Hygiene, v.98, n.2, p.382–388, 2018. .

CHENG, Y.; WONG, R.; SOO, Y.O.Y.; WONG, W.S.; LEE, C.K.; NG, M.H.L.; CHAN, P.; WONG, K.C.; LEUNG, C.B.; CHENG, G. Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, v.24, n.1, p.44–46, 2005. .

CHU, C.M.; CHENG, V.C.C.; HUNG, I.F.N.; WONG, M.M.L.; CHAN, K.H.; CHAN, K.S.; KAO, R.Y.T.; POON, L.L.M.; WONG, C.L.P.; GUAN, Y.; PEIRIS, J.S.M.; YUEN, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, v.59, n.3, p.252–256, 2004. .

DE WILDE, A.H.; JOCHMANS, D.; POSTHUMA, C.C.; ZEVENHOVEN-DOBBE, J.C.; VAN NIEUWKOOP, S.; BESTEBROER, T.M.; VAN DEN HOOGEN, B.G.; NEYTS, J.; SNIJDER, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrobial Agents and Chemotherapy, v.58, n.8, p.4875–4884, 2014. .

DONG, L.; HU, S.; GAO, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics, v.14, n.1, p.58–60, 2020. .

DUAN, K.; LIU, B.; LI, C.; ZHANG, H.; YU, T.; QU, J.; ZHOU, M.; CHEN, L.; MENG, S.; HU, Y.; PENG, C.; YUAN, M.; HUANG, J.; WANG, Z.; YU, J.; GAO, X.; WANG, D.; YU, X.; LI, L.; ZHANG, J.; WU, X.; LI, B.; XU, Y.; CHEN, W.; PENG, Y.; HU, Y.; LIN, L.; LIU, X.; HUANG, S.; ZHOU, Z.; ZHANG, L.; WANG, Y.; ZHANG, Z.; DENG, K.; XIA, Z.; GONG, Q.; ZHANG, W.; ZHENG, X.; LIU, Y.; YANG, H.; ZHOU, D.; YU, D.; HOU, J.; SHI, Z.; CHEN, S.; CHEN, Z.; ZHANG, X.; YANG, X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences, p.1–7, 2020. .

GREIN, J.; OHMAGARI, N.; SHIN, D.; DIAZ, G.; ASPERGES, E.; CASTAGNA, A.; FELDT, T.; GREEN, G.; GREEN, M.L.; LESCURE, F.X.; NICASTRI, E.; ODA, R.; YO, K.; QUIROS-ROLDAN, E.; STUDEMEISTER, A.; REDINSKI, J.; AHMED, S.; BERNETT, J.; CHELLIAH, D.; CHEN, D.; CHIHARA, S.; COHEN, S.H.; CUNNINGHAM, J.; D’ARMINIO MONFORTE, A.; ISMAIL, S.; KATO, H.; LAPADULA, G.; L’HER, E.; MAENO, T.; MAJUMDER, S.; MASSARI, M.; MORA-RILLO, M.; MUTOH, Y.; NGUYEN, D.; VERWEIJ, E.; ZOUFALY, A.; OSINUSI, A.O.; DEZURE, A.; ZHAO, Y.; ZHONG, L.; CHOKKALINGAM, A.; ELBOUDWAREJ, E.; TELEP, L.; TIMBS, L.; HENNE, I.; SELLERS, S.; CAO, H.; TAN, S.K.; WINTERBOURNE, L.; DESAI, P.; MERA, R.; GAGGAR, A.; MYERS, R.P.; BRAINARD, D.M.; CHILDS, R.; FLANIGAN, T. Compassionate Use of Remdesivir for Patients with Severe Covid-19. New England Journal of Medicine, p.1–10, 2020. .

GRONEBERG, D.A.; HILGENFELD, R.; ZABEL, P. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respiratory Research, v.6, p.1–16, 2005. .

HOLSHUE, M.L.; DEBOLT, C.; LINDQUIST, S.; LOFY, K.H.; WIESMAN, J.; BRUCE, H.; SPITTERS, C.; ERICSON, K.; WILKERSON, S.; TURAL, A.; DIAZ, G.; COHN, A.; FOX, L.A.; PATEL, A.; GERBER, S.I.; KIM, L.; TONG, S.; LU, X.; LINDSTROM, S.; PALLANSCH, M.A.; WELDON, W.C.; BIGGS, H.M.; UYEKI, T.M.; PILLAI, S.K. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine, v.382, n.10, p.929–936, 2020. .

HUANG, C.; WANG, Y.; LI, X.; REN, L.; ZHAO, J.; HU, Y.; ZHANG, L.; FAN, G.; XU, J.; GU, X.; CHENG, Z.; YU, T.; XIA, J.; WEI, Y.; WU, W.; XIE, X.; YIN, W.; LI, H.; LIU, M.; XIAO, Y.; GAO, H.; GUO, L.; XIE, J.; WANG, G.; JIANG, R.; GAO, Z.; JIN, Q.; WANG, J.; CAO, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, v.395, n.10223, p.497–506, 2020. .

IBA, T.; LEVY, J.H.; WARKENTIN, T.E.; THACHIL, J.; VAN DER POLL, T.; LEVI, M. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. Journal of Thrombosis and Haemostasis, v.17, n.11, p.1989–1994, 2019. .

JIN, Y.H.; CAI, L.; CHENG, Z.S.; CHENG, H.; DENG, T.; FAN, Y.P.; FANG, C.; HUANG, D.; HUANG, L.Q.; HUANG, Q.; HAN, Y.; HU, B.; HU, F.; LI, B.H.; LI, Y.R.; LIANG, K.; LIN, L.K.; LUO, L.S.; MA, J.; MA, L.L.; PENG, Z.Y.; PAN, Y.B.; PAN, Z.Y.; REN, X.Q.; SUN, H.M.; WANG, Y.; WANG, Y.Y.; WENG, H.; WEI, C.J.; WU, D.F.; XIA, J.; XIONG, Y.; XU, H.B.; YAO, X.M.; YUAN, Y.F.; YE, T.S.; ZHANG, X.C.; ZHANG, Y.W.; ZHANG, Y.G.; ZHANG, H.M.; ZHAO, Y; ZHAO, M.J.; ZI, H.; ZENG, X.T.; WANG, Y.Y.; WANG, X.H. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, v.7, n.1, p.1–23, 2020. .

KLOK, F.A.; KRUIP, M.J.H.A.; VAN DER MEER, N.J.M.; ARBOUS, M.S.; GOMMERS, D.A.M.P.J.; KANT, K.M.; KAPTEIN, F.H.J.; VAN PAASSEN, J.; STALS, M.A.M.; HUISMAN, M.V.; ENDEMAN, H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, p.1–3, 2020. .

KUBA, K.; IMAI, Y.; RAO, S.; GAO, H.; GUO, F.; GUAN, B.; HUAN, Y.; YANG, P.; ZHANG, Y.; DENG, W.; BAO, L.; ZHANG, B.; LIU, G.; WANG, Z.; CHAPPELL, M.; LIU, Y.; ZHENG, D.; LEIBBRANDT, A.; WADA, T.; SLUTSKY, A.S.; LIU, D.; QIN, C.; JIANG, C.; PENNINGER, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, v.11, n.8, p.875–879, 2005. .

LI, X.; GENG, M.; PENG, Y.; MENG, L.; LU, S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, v.19, p.1-7, 2020. .

MAHASE, E. Covid-19: what treatments are being investigated? Bmj, v.1252, p.1–2, 2020. .

REN, L.L.; WANG, Y.M.; WU, Z.Q.; XIANG, Z.C.; GUO, L.; XU, T.; JIANG, Y.Z.; XIONG, Y.; LI, Y.J.; LI, X.W.; LI, H.; FAN, G.H.; GU, X.Y.; XIAO, Y.; GAO, H.; XU, J.Y.; YANG, F.; WANG, X.M.; WU, C.; CHEN, L.; LIU, Y.W.; LIU, B.; YANG, J.; WANG, X.R.; DONG, J.; LI, L.; HUANG, C.L.; ZHAO, J.P.; HU, Y.; CHENG, Z.S.; LIU, L.L.; QIAN, Z.H.; QIN, C.; JIN, Q.; CAO, B.; WANG, J.W. Identification of a novel coronavirus causing severe pneumonia in human. Chinese Medical Journal, p.1-10, 2020. .

ROTHAN, H.A.; BYRAREDDY, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, v.109, p.1–4, 2020. .

SAVARINO, A.; DI TRANI, L.; DONATELLI, I.; CAUDA, R.; CASSONE, A. New insights into the antiviral effects of chloroquine. Lancet Infectious Diseases, v.6, n.2, p.67–69, 2006. .

SCHREZENMEIER, E.; DÖRNER, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nature Reviews Rheumatology, v.16, n.3, p.155–166, 2020. .

SHEAHAN, T.P.; SIMS, A.C.; GRAHAM, R.L.; MENACHERY, V.D.; GRALINSKI, L.E.; CASE, J.B.; LEIST, S.R.; PYRC, K.; FENG, J.Y.; TRANTCHEVA, I.; BANNISTER, R.; PARK, Y.; BABUSIS, D.; CLARKE, M.O.; MACKMAN, R.L.; SPAHN, J.E.; PALMIOTTI, C.A.; SIEGEL, D.; RAY, A.S.; CIHLAR, T.; JORDAN, R.; DENISON, M.R.; BARIC, R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, v.9, p.1–10, 2017. .

SINGER, M.; DEUTSCHMAN, C.S.; SEYMOUR, C.W.; SHANKAR-HARI, M.; ANNANE, D.; BAUER, M.; BELLOMO, R.; BERNARD, G.R.; CHICHE, J.D.; COOPERSMITH, C.M.; HOTCHKISS, R.S.; LEVY, M.M.; MARSHALL, J.C.; MARTIN, G.S.; OPAL, S.M.; RUBENFELD, G.D.; VAN DER POLL, T.; VINCENT, J.L.; ANGUS, D.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of American Medical Association, v.315, n.8, p.801–810, 2016. .

TANG, N.; BAI, H.; CHEN, X.; GONG, J.; LI, D.; SUN, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of thrombosis and haemostasis, v.18, p.1094–1099, 2020. .

THACHIL, J.; TANG, N.; GANDO, S.; FALANGA, A.; CATTANEO, M.; LEVI, M.; CLARK, C.; IBA, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. Journal of Thrombosis and Haemostasis, p.1023–1026, 2020. .

TOURET, F.; DE LAMBALLERIE, X. Of chloroquine and COVID-19. Antiviral Research, v.177, p.1–2, 2020. .

TU, Y.F.; CHIEN, C.S.; YARMISHYN, A.A.; LIN, Y.Y.; LOU, Y.H.; LIN, Y.T.; LAI, W.Y.; YANG, D.M.; CHOU, S.J.; YANG, Y.P.; WANG, M.L.; CHIOU, S.H. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International Journal of Molecular Sciences, v.21, n.2657, p.1-19, 2020. .

VINCENT, M.J.; BERGERON, E.; BENJANNET, S.; ERICKSON, B.R.; ROLLIN, P.E.; KSIAZEK, T.G.; SEIDAH, N.G.; NICHOL, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, v.2, p.1–10, 2005. .

WANG, M.; CAO, R.; ZHANG, L.; YANG, X.; LIU, J.; XU, M.; SHI, Z.; HU, Z.; ZHONG, W.; XIAO, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, v.30, n.3, p.269–271, 2020. .

WARREN, T.K.; JORDAN, R.; LO, M.K.; RAY, A.S.; MACKMAN, R.L.; SOLOVEVA, V.; SIEGEL, D.; PERRON, M.; BANNISTER, R.; HUI, H.C.; LARSON, N.; STRICKLEY, R.; WELLS, J.; STUTHMAN, K.S.; VAN TONGEREN, S.A.; GARZA, N.L.; DONNELLY, G.; SHURTLEFF, A.C.; RETTERER, C.J.; GHARAIBEH, D.; ZAMANI, R.; KENNY, T.; EATON, B. P.; GRIMES, E.; WELCH, L.S.; GOMBA, L.; WILHELMSEN, CL.; NICHOLS, D.K.; NUSS, J.E.; NAGLE, E.R.; KUGELMAN, J.R.; PALACIOS, G.; DOERFFLER, E.; NEVILLE, S.; CARRA, E.; CLARKE, M.O.; ZHANG, L.; LEW, W.; ROSS, B.; WANG, Q.; CHUN, K.; WOLFE, L.; BABUSIS, D.; PARK, Y.; STRAY, K.M.; TRANCHEVA, I.; FENG, J.Y.; BARAUSKAS, O.; XU, Y.; WONG, P.; BRAUN, M.R.; FLINT, M.; MCMULLAN, L.K.; CHEN, S.S.; FEARNS, R.; SWAMINATHAN, S.; MAYERS, D.L.; SPIROPOULOU, C.F.; LEE, W.A.; NICHOL, S.T.; CIHLAR, T.; BAVARI, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, v.531, n.7594, p.381–385, 2016. .

WHO. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during Outbreaks. Interim Guidance for National Health Authorities and Blood Transfusion Services, v.1, p.1–19, 2014.

WRAPP, D.; WANG, N.; CORBETT, K.S.; GOLDSMITH, J.A.; HSIEH, C.L.; ABIONA, O.; GRAHAM, B.S.; MCLELLAN, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, v.367, n.6483, p.1260–1263, 2020. .

ZHOU, D.; DAI, S.M.; TONG, Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. The Journal of Antimicrobial Chemotherapy, p.1–4, 2020. .
Publicado
2020-08-28
Como Citar
Gasser, B., & Andres Ramirez Uscategui, R. (2020). POTENTIAL THERAPIES FOR TREATMENT OF COVID-19. Revista De Ciência Veterinária E Saúde Pública, 7(1), 062-071. https://doi.org/10.4025/revcivet.v7i1.55502
Seção
Artigos Originais