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Abstract. This paper proposes to present an applicatiddF@d programs in a simulation of the
flow in a hydraulic jump. Initially, it has beentinduced the nonlinear representative equations
of the flow and the turbulence models necessasptee Navier-Stokes equations. Therefore, it
will be demonstrated how to resolve these equatimirsg the numerical methods by means of
discretisetion and system solve. Finally, it wi# Bhown a transient problem application in a
simulation of a hydraulic jump of horizontal chahriEhe turbulence model used for proposed
problem resolution was the Reynolds Stress Mod&8MR which better represents the physical
flow characteristics of the problem. A comparisdémh@ numerical results with experimental data
has showed two different behaviors: the free serfache experimental data presents the level of
upstream agreement higher than in the hydraulipjuherefore, in the first one the experimental
data line was immerged in to 90% of volume fractdrwater region, by the other hand, in the
hydraulic jump, the experimental free surface id@atween 70 and 80% of volume fraction of
water region.
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Resumo: Este trabalho propde a aplicacdo de modelos mat@watia programa CFD em uma
simulacdo de escoamento em um ressalto hidrauligoialmente, foram introduzidas as
equacdes ndo-lineares e representativas do escimaendnos modelos de turbuléncia necessarios
para resolver equagbes de Navier-Stokes. Seracempaelas as formas de resolucdo destas
equacbes usando-se os métodos numeéricos por meisatatizacdo das equacdes do sistema.
Finalmente, sera aplicado na solugdo de um probteamsiente na simulacdo de um ressalto
hidraulico em canal horizontal. O modelo de turbai@ usado para resolucdo do problema
proposto foi 0 modelo de Stress de Reynolds (RSMg melhor representa as caracteristicas
fisicas e de escoamento do problema proposto. Wmparacdo dos resultados numeéricos com
dados experimentais mostrou dois comportamentesedifes: na superficie livre @ montante do
ressalto hidraulico a simulacdo apresenta um migelproximacao mais elevado do que no salto
hidraulico propriamente dito, da ordem de cerca 996 comparando-se com o0s dados
experimentais, por outro lado, no ressalto hidcaudi imersdo da superficie livre situou-se entre
70 e 80% do total dos resultados simulados comgarae com os dados experimentais para esta
regiao.
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100 LINTRODUCTION

Computational Fluid Dynamics (CFD) is a computesdth tool for simulating the
behavior of systems involving fluid flow, heat tsd@r, and other related physical processes. It
works by solving the equations of fluid flow (inspecial form) over a region of interest, with
specified (known) conditions on the boundary ot tiegion.

Computers have been used to solve fluid flow prokldor many years. Numerous
programs have been written to solve either spegifablems, or specific classes of problem.
From the mid-1970’s the complex mathematics reguioegeneralize the algorithms began to be
understood, and general-purpose CFD solvers werdajged. These began to appear in the early
1980’s and required what were then very powerfuhgoters, as well as an in-depth knowledge
of fluid dynamics, and large amounts of time to @getsimulations. Consequently, CFD was a
tool used almost exclusively in research. Recentiacks in computing power, together with
powerful graphics and interactive 3-D manipulatcdimodels mean that the process of creating a
CFD model and analyzing the results is much les®rimtensive, reducing the time and
therefore the cost. Advanced solvers contain algms, which enable robust solution of the flow
field in a reasonable time. As a result of thestoi®s, Computational Fluid Dynamics is now an
established industrial design tool, helping to mEdesign timescales and improve processes
throughout the engineering world. CFD provides st-@&ffective and accurate alternative to scale
model testing, with variations on the simulationinigeperformed quickly; offering obvious
advantages (CFX, 2004).

The set of equations that describe the processe®wientum, heat and mass transfer are
known as the Navier-Stokes equations. These palifi@rential equations were derived in the
early nineteenth century. They have no known gérzeralytical solution but can be discretised
and solved numerically. Equations describing ofireicesses, such as combustion, can also be
solved in conjunction with the Navier-Stokes equadi Often, an approximating model is used
to derive these additional equations, turbulenceefsobeing a particularly important example.
There are a number of different solution methods &ne used in CFD codes. The most common,
and the one on which Software is based, is knowrhasfinite volume technique. In this
technique, the region of interest is divided intoali sub-regions, called control volumes. The
equations are discretised and solved iteratively gach control volume. As a result, an
approximation of the value of each variable at gmepoints throughout the domain can be
obtained. In this way, one derives a full pictuféhe behavior of the flow (CFX, 2004).

This paper proposes to present an application @ @fograms in a simulation of the
flow in a hydraulic jump. Initially, it has beentinduced the nonlinear representative equations
of the flow and the turbulence models necessaolee Navier-Stokes equations. Therefore, it
will be demonstrated how to resolve theses equatisng the numerical methods by means of
discretisetion and system solve. Finally, it wi# Bhown a transient problem application in a
simulation of a hydraulic jump of horizontal chahriehe turbulence model used for proposed
problem resolution was the Reynolds Stress Mod&8IMR which better represents the physical
flow characteristics of the problem.

2 TRANSPORT EQUATIONS

The hypothesis being considered of the continuoastae Newtonian fluids (Figure 1),
the equations associated to the conservation begsare had (LESIEUR, 1996).
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Figure 1. Control Volume for Mass Balance and Momentum

. The Continuity Equation.
% + [.(pu) =0 (1)

Mass Flowthrough
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where: u is the velocity vector ang is the fluid density.
+ The Momentum Equations (The Navier-Stokes EquaYioR® = F, ..t FIoody

_ _ _Du _0d(u) _ _
where:F is force emis mass anda = ot ot + (u.0)(u)= is acceleration.
Using the compressible flow and constant physioap@rties hypothesis, it is had:
0
O+ @hpu= -Op +  ulfu @)
ot , , T e o
— Convectivé&low PressGradientForce Diffusive Flow of the Momentum
Momentum oftheMomentum or Dissipation Kinetic Energy

Variation Rate
where:p is the pressurey is cinematic dynamic arnds the time.
The convective flow term of the momentum also egpes the non-lineal interactions
among the several scales that compose the specfrenergy typical of the flow.
. The Energy Equation.

oT
— 4+ DT = «0°T + S 3)
ot — T
Enegy _Enery Energy Sorce
Enery Convectivé-low DiffusiveFlow

Variation Rate

where:T is the temperaturey is thermal conductivity;S is the energy source.
3REYNOLDSAVERAGE NAVIER-STOKES (RANS)

The basics Navier-Stokes equations are modifiecpoesent the instantaneous variable
how an average variable composition. Using theageeffunctions proprieties, the equation for
the average flow is obtained. These news equatiduns,to the original non-linear equations,
contain terms that involve the products of speedsyancy in different directions. Theses
buoyancy terms do not have the definitive equatiod give origin the eddy viscosity. For
example, a velocity vectan may be divided into an average componént,and a time varying
componentu' (LESIEUR, 1996).
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u=u-+u'
t+At
The averaged component is given by N Iu.dt
t

The Equations below shows the Reynolds EquatiothiBaincompressible flow.

% +orfem)=0 (4)
ag—tu+D.(pU><U) = 0. (- pu xu') +8S, )
wherexr = p.[0.u is the molecular stress tensy, is source term of momentum equation.
%m. (U@ = 0.(Op-pu'g) +S, )

where:@ is transport variabld; is diffusivity andSy is source term of transport equation.

The continuity equation has not been altered batrttomentum and scalar transport
equations contain turbulent flux terms additiomatiie molecular diffusive fluxes. These are the
Reynolds stresspu’ xu', and the Reynolds fluxpu'g. These terms arise from the nonlinear
convective term in the un-averaged equations. Ta#gct the fact that convective transport due
to turbulent velocity fluctuations will act to em@ mixing over and above that caused by
thermal fluctuations at the molecular level. At thigReynolds numbers, turbulent velocity
fluctuations occur over a length scale much largean the mean free path of thermal
fluctuations, so that the turbulent fluxes are miacher than the molecular fluxes (CFX, 2004).

4 TURBULENCE MODELS

Turbulent flows are characterized by fluctuatindgoe#y fields. These fluctuations mix
transported quantities such as momentum, energy,species concentration, and cause the
transported quantities to fluctuate as well. Sithese fluctuations can be of small scale and high
frequency, they are too computationally expensovaimulate directly in practical engineering
calculations. Instead, the instantaneous (exactlerging equations can be time-averaged,
ensemble-averaged, or otherwise manipulated tovertie small scales, resulting in a modified
set of equations that are computationally less esige to solve. However, the modified
equations contain additional unknown variables, @mmbulence models are needed to determine
these variables in terms of known quantities (WIRCQ000).

The highlights turbulences models in the bibliodniap are presented below.

. One Equation Model.
o} Spalart-Allmaras model.
. Two Equations Models.]
. k—¢& Model
0 Standardk — & Model.
o} Renormalization-group (RN&)- £ Model.
o} Realizableék — £ Model.
. k-« Model.
0 Standardk — « Model.
o} Shear stress transport (SXH « Model.
. V2 —f Model.
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. Reynolds stress model (RSM) 103
. Large eddy simulation (LES) model
. Detached Eddy Simulation (DES) model.
In the above item, have being increase computdteffat in the models upper to down,
due to physics variable additio(WILCOX, 2000)
In this problem, the Turbulence Model used for gltion was The Reynolds Stress
Model.

4.1 THE REYNOLDS STRESS MODEL (RSM)

The Reynolds Stress Model involves calculation e tndividual Reynolds Stresses,

u'xu', using differential transport equations. The ingdiinal Reynolds stresses are then used to
obtain closure of the Reynolds-averaged momentumaten.

The exact form of the Reynolds stress transporatopns may be derived by taking
moments of the exact momentum equation. This igogegss wherein the exact momentum
equations are multiplied by a fluctuating propettye product then being Reynolds-averaged.
Unfortunately, several of the terms in the exactatign are unknown and modeling assumptions
are required in order to close the equations. TénBIds stress transport equations are presented
together with the modeling assumptions requireattain closure.

The exact transport equations for the transpothefReynolds stressgsu'xu’, may be
written as follows (LAUNDER ET AL., 1975) (SMAGORBKY, 1963):
apuTxu +0 [ﬁp u'xu'x u)— O Eé,acE u'xu'(Du'xu')Tj =P+G+¢ —%5,05 (7)
£
where P and G are shear and buoyancy turbulence production terfirthe Reynolds
stresses respectively afis a constant. Buoyancy turbulence terms are ciéedran the same

way as for th&-[1 andk-[] model.
The transport of the Reynolds stresses can beswiiittindex notation as.

0 2 k2\ouiu | 2
[(/J"'_Csp_] J}-—d,-pf (8)

2 (o, )+ 2 oo )= R g+ L

ot 0X, X, 3 E ) OX, 3

wherelJ; is the pressure-strain correlation, &hdthe exact production term, is given by:

P = —;{Waﬁ +Waij 9
! K 0%, ok 0X,

As the turbulence dissipation appears in the iodial stress equations, an equation for e
is still required. This now has the form:

0(0g) , O (0 )= (c.p- Ot )02
T (ue) = (c.aP szp£)+axk HWJE o (10)

One of the most important terms in Reynolds stresxlels is the pressure-strain
correlation, ;.
The pressure strain correlations can be expressie igeneral form:

B=G.74,%79., (11)
where ¢, , is the slow pressure-strain term, also known asehen-to-isotropy termg ,
is called the rapid pressure-strain term, apglis the wall-reflection term.
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104 The slow pressure-strain terg,, , is modeled as.

E 7 2
A.=Cot [0 -2k (12)
with C.=18.
The rapid pressure-strain terg),, is modeled as.

2
¢|j 2= _C2|:(Pij - Cij )_gdij (P + C)} (13)
where C; = 0,60, Pj is defined as in Equation 9, a@g is convection term in the
transport of the Reynolds stress equatiba; B, andC =3C,,.

The wall-reflection terme; ., is responsible for the redistribution of normi@esses near
the wall. It tends to damp the normal stress petjgetar to the wall, while enhancing the
stresses parallel to the wall. This term is modaleéquations (4) and (5).

VE( 3—— 3— k%
Gw= ClE(ukumrknmdij _E qLLnjnk _E UJ-L{(r}nij/ -d
, 3 3 R
+C2(¢f<m,2r\<nm5ij =5 AN ‘E%,zﬂnkjm (14)

where C; = 05; C, = 03; ng is thex, component of the unit normal to the walljs the
normal distance to the wall, andC, :CZ‘/K, where C, = 009 and « is the von Karman
constant k = 0,4187).

SNUMERICAL DISCRETISATION

Analytical solutions to the Navier-Stokes equatiexsst for only the simplest of flows
under ideal conditions. To obtain solutions for fé@vs a numerical approach must be adopted
whereby the equations are replaced by algebraicoappations, which may be solved using a
numerical method.

Element face centroid,

Element

Node Finite Volume surface

Figure 2. Volume Finite Surface (CFX, 2004)
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This approach involves discretising the spatial doninto finite control volumes using 1gg
mesh. The governing equations are integrated caehn eontrol volume, such that the relev
guantity (mass, momentum, energy etc.) is consarvadliscrete sense for each control volume.
The Figure 2 shows a typical mesh with unit degththat it is two-dimensional), on which one
surface of the finite volume is represented bysthaded area [1].

It is clear that each node is surrounded by a Bsudaces, which comprise the finite
volume. All the solution variables and fluid propes are stored at the element nodes. Consider
the mean form of the conservation equations forsyTa®mentum and a passive scalar, expressed
in Cartesian coordinat€¢€§FX, 2004)

a—"+—6(p“j):o (15)
ot axj

0 0 __oP . 0 du, , 0u;

E(ﬂ'h) OX (ﬂJJ I) OX an [ﬂeff (a-'- aXi }} 116
0 0 0 Y,

—loa)+ . 2 (ou,9)= o [F ( o D S, (17)

where:T', =T + I';; I'; is the turbulence diffusivity.

These equations are integrated over a control welland Gauss’ divergence theorem is
applied to convert some volume integrals to surfategrals. For control volumes that do not
deform in time, the time derivatives can be movedside of the volume integrals and the
equations become:

d _
a\.[pdv+‘£pujdnj =0 (18)

%\J;pqdv+£pujqdnj den +J”e“(axj +(;7|]dn +[s,dv (19)

d _ 0@
— + ) — _—
dtipf/dv im,wnj ireﬁ(axj
whereV ands respectively denote volume and surface regionsiteration, andin are
the differential Cartesian components of the outilwveormal surface vector. The surface integrals
are the integrations of the fluxes, whereas themel integrals represent source or accumulation
terms. Changes to these equations due to contirineodeformation are presented below.
The first step in solving these continuous equatioamerically is to approximate those
using discrete functions. Now consider an isolatesh element such as the one shown below.

]omj + j s,dv (20)
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Integration Point

Element Face Centroid

Sectors

Figure 3. Isolated Mesh Element (CFX, 2004).

The surface fluxes must be discretely represeritélieantegration points to complete the
conversion of the continuous equation into thescdite form. The integration poinigpn, are
located at the centre of each surface segmen8ih @lement surrounding the finite volume.

The discrete form of the integral equations istentas (CFX, 2004):

(22 S lonan), =0 V{252 T lman), =0 @

-u’ . 0 auj —
- At“'j+i2mp(ui) Z(PAn).uz(ueﬁ(a‘x‘ aT}AnJ}_ +S,V (@

p i

oV

a N
pV ] Zmpwp—. L 67¢Anj} +S,V (23)
ip

i

[pU. piu °j+2mp( u), = 2. (PAn,), +Z[uef{ o +%Jﬂn;l +S,V  (24)

p ]

V{M}Zmp% = Z[reﬁ %An]} +S,V 5§2

At i i 0X; .

where V is the control volume, the subscrigt denotes an integration point, the
summation is over all the integration points of thete volume, Anj is the discrete outward
surface vectorAt is the timestep. Note that the First Order Backwanier scheme has been
assumed in this equation, although a second odtemse is also available as discussed below.
Superscript® refers to the old time level. The discrete masw fibrough a surface of the finite

volume is denoted bynh, and is given by (CFX, 2004):
m, = (ou ian; ).c; (26)

5.1 THE COUPLED SYSTEM OF EQUATION

The linear set of equations that arise by applyiing Finite Volume Method to all
elements in the domain are discrete conservatioratemns. The system of equations can be
written in the form:

2.8°q=h (27)

nbi
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where ¢ is the solutionp the right hand sidea the coefficients of the equationis the 107
identifying number of the finite volume or nodequnestion, anehb means “ neighbor”, but alc _
includes the central coefficient multiplying thellgemn at theith location. The node may have
any number of such neighbors, so that the methajuslly applicable to both structured and
unstructured meshes. The set of these, for atefwolumes constitutes the whole linear equation

system. For a scalar equation (e.g. enthalpy tutant kinetic energy), eac™, ¢, andb; is a

single number. For the coupled, 3D mass-momenturatem set they are a (4 x 4) matrix or a (4

x 1) vector, which can be expressed as:
nb

auu auv auw aup u bU
| S B Ay 8y |V b,
= , = and b =
> Qu  An A Gy “ w . b,
Qpu  Apy Ay 8y ¢ P, bp t

It is at the equation level that the coupling iregtion is retained and at no point are any
of the rows of the matrix treated any differentyq. different solution algorithms for momentum
versus mass). The advantages of such a couplethéetaover a non-coupled or segregated
approach are several: robustness, efficiency, gétyerand simplicity. These advantages all
combine to make the coupled solver an extremelyepful feature of any CFD code. The
principal drawback is the high storage needed lfdha coefficients.

The program uses a Multigrid (MG) accelerated Inglmte Lower Upper (ILU)
factorization technique for solving the discretstsyn of linearised equations. It is an iterative
solver whereby the exact solution of the equatisnapproached during the course of several
iterations.

The linearised system of discrete equations desgtrdibove can be written in the general
matrix form:

[Allg]= [b] (28)

where P is the coefficient matrix,[[] the solution vector and] the right hand side.

The above equation can be solved iteratively btistawith an approximate solutioff,
that is to be improved by a correction, to yield a better solutiorf™?, i.e.

Dn +1 =N+

where is a solution of withn, the residual, obtained from, Repeated applicabibthis
algorithm will yield a solution of the desired acacy. By themselves, iterative solvers such as
ILU tend to decrease rapidly in performance asmhmber of computational mesh elements
increases. Performance also tends to decreasdyrdipithere are large element aspect ratios
present. The performance of the solver can belgrieaproved by employing a technique called
‘multigrid’ (CFX, 2004).

6 THE HYDRAULIC JUMP

The Hydraulic Jump is a phenomenon that is formdoenever flow changes from
supercritical to sub critical flow. In this transi from supercritical to sub critical flow, water
surface rises abruptly, surface rollers are forniegnse mixing occurs, air is entrained, and a
large amount of energy is usually dissipated. Blzirtg these characteristics, a hydraulic jump
can be used to dissipate energy, to mix chemioals act as an aeration device (CHAUDHRY,
1993).
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108 The Figure 4 represents the hydraulic jump charatites that occur in horizontal or in
small-sloped channels for transient flow. Thereeduction average velocity, in direction to the
flow, with a presence of a turbulence accentualiethe raise of water surface is high, the
surfaces in the section of hydraulic jump make @miegular water eddies in relatively control
volume position. The water mass buoyancy advarteesit entrainment in the flow appear the
air bubbles. The turbulence in hydraulic jump amel ¢ddy movement produce important energy
dissipation (PORTO, 2004).

The hydraulic jump is confined between the flow ttlepupstream, where the flow is
torrential, and downstream, where the flow is falviwhich the pressure distribution is
hydrostatic. The flow depths upstream, and downstream,,yof the jump are calledequent
depths or conjugate depthsThe difference, 3~ vi, is calledhydraulic jump depthand it is an
important parameter in hydraulic jump characteraratlike energy dissipater. The height
difference in the energy lingE is calledhydraulic jump energy loS€HAUDHRY, 1993).

Control |
Volume\;

Critical |

U1

AL L LSS LS LS L ,
Supercritical Hydraulic Jump Subcritical
Figure 4. Hydraulic Jump (PORTO, 2004).

To simplify the derivation, consider a rectangulasrizontal channel will be considered,
as our problem. Since the amount of energy loghenjump is not known firstly, it cannot be
applied the energy equation directly. In transitonv, the momentum theorem shows that all
forces in control volume mobile are equal to themmotum flow on the control surface.
Therefore, on control of mobile volume operatespressure distribution forces in section 1 and
2 in according to Figure 4. This way, the one-disienal flow can be expressed as (PORTO,
2004):

For relatively velocity (1) on control of mobile volume:

Section 1l =U; + Uy

Section 2y = Uz + Uy

Continuity:jcs(pu.dA) =0 - (u, +u,)y, =(u, +u, )y, 29)
Momentum3" F, = [u(oudA)or

SC

F-F= _p(ul + uw)Ai(ul + uw)+ ,0(U2 + uw)Az(uz + uw) (30)
where:A; = b.y; andA; = b.y; are section area in 1 and 2; b is width of reatiéarg
channel.
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Of the Static of Fluids, the force on a plain regie given byF = p.g.y.A, on which, 109

37:5 is the vertical distance between the free surtaue the gravity center in the section,

therefore:

gViA —9Y,A = _(Ul + uw)Ai(ul + uw)+ (uz + uw)Az (uz + uw) (31)
For rectangular section the equation 31 can beenrds:
1
5007 ~¥)= -l o Py o vu, Py, 32)
Using the continuity:
1 1 1 y;
E(yf-y§)=-§(u1+uw)2y1+§(ul+uw)2y—122yz (33)
or

- _ |19y
cC=uy, + u, = 2.yj (yl + yz) (34)
where: c is celerity.
In equation 34, ifly =0  —2_ = L(“ ﬁJ (35)

\/ gyl 2y1 yl
Now, the Froude numbeFr, = L, Hence, Eg 35 may be written as:
)%
2

(ﬁj +Y2 _pFr2=0 J36

Y1 Y1

Solution of this equation yields [6].

Y2 :%(—1+1/1+8Fr12) (37)

Y1

Note that the negative sign with the radical tesnmeglected because it given a negative
ratio, which is physically impossible. This equatispecifies a relationship between the depths
upstream of the jump in terms Bf;. Proceeding similarly; we can derive the followeguation
in terms offFr, (CHAUDHRY, 1993).

i :%(—1+1/1+8Fr22) (38)

Y,
7NUMERICAL SIMULATION

The purpose of this paper is two-fold. First, itiidended to demonstrate that certain
known complex features of the hydraulic jump canresolved. Secondly, it is intended to
compare numerical results with experimental data.sdlve the problem it has been used the
Reynolds Stress Model for multiphase Free Surface.

As it is shown in Figure 4, the geometry of thelpem is:

. y1 = 0,0372 m;y, = 0,1800 mp = 0,1000 m and (length) = 3,0000 m.
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The simulation could be divided in two parts: Fo§all, for wave formation to introduce
a velocity smaller than that velocity for Froudemher for steady hydraulic jump; second, it has
been used the velocity for steady wave in hydrauiiop after 3 seconds of simulation. This
Froude Number Rr; = 3,76) defines a transitory hydraulic jump, whicharacterizes an
oscillatory upstream in the surface of hydraulimju

The mesh used for simulation is presented in Figui@n the left, it is shown the entire
domain and on the right there is the vertical detimesh. On the button it has been used mesh
cell of 0,01 m and on the top the mesh cell is 8626 m.

The domain, Fluids and Simulation characteriséisswell as the initial and boundary
conditions are shown in Table 1.

Table 1: The Domain, Fluids and Simulation chanésties, initial and boundary conditions.

Domain
Number of Nodes 65 362
Number of Tetrahedrons Elements 354 004
Number of Faces 16 616
Fluids
Water Air
Temperature 28C Temperature 2%
Dynamic 8,899*10* kg.m Dynamic 1,831*10° kg.m
Viscosity tgt Viscosity tgt
Density 998 kg.nd Density 1,185 kg.i
Surface  Tension 0,0732 N.nt
Coef.
Simulation
Time step 0,005 s
Simulation Time 6,6 s
Process Characteristic Two Processor In Parallel
CPU Time Processing 4,618
Boundary and Initial Conditions
Button and sides Walls
Top Opening
Inlet (t< 3 s) . u(Water) = 1,0 m u(Air) = 0 v(Water) = 0; v(Air) = 0; w(Water) ©;
w(Air) = 0; p(Water) =p.g.y1 —p-9.y; p(Air) =0 _
Inlet (t > 3 s) u(Water) = 2,27 m5 u(Air) = 0; v(Water) = 0; v(Air) = 0; w(Water) ®;

Outlet

Initial Condition

W(AIr) = 0; p(Water) =p.g.y1 —p.g.y; p(Air) =0
du/dx(Water) = 0; du/dx(Air) = 0; dv/dx(Water) =
dw/dx(Water) = 0; dw/dx(Air) = 0; p(Water) =g.¥, — p.g.y; p(Air) =
u(Water) = 1,0 m:§ u(Air) = 0; v(Water) = 0; v(Air) =
W(AIr) = 0; p(Water) =p.g.y1 —p.g.y; p(Air) = 0

ajv/dx(Air) = 0;
0

0; w(Water) #;
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A ATATTATAY

Figure5. Mesh used in Numerical Simulation.

8 RESULTS

The numerical results obtained are showed in fig.8, after 6 seconds of simulation. In
fig.6 the fraction of water volume in relation teetair volume, or it is, the value 1.00 represents
the presence of 100% of water and 0.00 represéfitsf@vater or 100% of air.

Fig. 7 shows the formed pressure on field. Theileraff hydraulic jump downstream
joins closely with the static pressure or is sligtitigger. The oscillatory wave formed by the
hydraulic jump regime provokes this increase ospuee.

Figure 8 presents the velocity field in every chandomain in a lateral view. In the
entrance region the highest flow velocity can beseobked in the channel and the formation of
velocity profiles development. The formation of illations on the upstream amount on the free
hydraulic jump is due to the instabilities causgdhe superficial tension (instability of Kelvin-
Helmholtz) and more predominantly the gravitatioe#fliect (instability of Rayleigh-Taylor)
(LESIEUR, 1996).

—W

Water.Volume Fraction

F | | \ \ \

\
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 6. Volume Fraction of Water in Hydraulic Jump.
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Pressure [Pa]

| \ \ | | |
-200.7 37.8 276.2 514.7 753.2 991.6 1230.1 1468.5 1707.0 1945.4

Figure7. Pressure in Hydraulic Jump.

Water.Superficial Velocity [m s*-1]

F ! \ ! ! \ \

0.00 0.25 0.50 0.75 1.01 1.26 1.51 1.76 2.01 2.26
Figure 8. Velocity in Hydraulic Jump.

The wave propagation of hydraulic jump generat®ashown in fig. 9 in a break of 0.5 to
3.0 seconds. As it can be observed in frames efduxface for 90% of water a wave dislocates
from downstream to the amount upstream. It happecsuse of the high inflow and outflow
fixed physically as well as because of the entraratecity that establish the number of Froude,
which provide the formation of so called positivawe of downstream.

The simulation was interrupted after wave formaii®rsec.), when the velocity of inflow
has been increased for steady hydraulic jump ggoera Figure 10. A new wave has been
introduced, a negative upstream wave, which crgsinat earliest wave (negative downstream
wave) — frame of t = 4.0 sec. In the next frame {fe 5.0 sec), the only one wave was formed
and, finally, the quasi-steady wave generatedasvahin the final frame (for t = 6.0 sec) — Figure
10.

Oscillatory waves on the upstream of hydraulic juagpshowed in Figure 11(a), which
represents a gravitational wave like the oceanantgi waves (tsunamis) (INGARD, 1988)
(PENNA, 1984). The obtained Froude Numbier,(= 3.76) define a transitory hydraulic jump
which characterize an oscillatory upstream on tivéase of hydraulic jump, is shown in Figure
11(b). The turbulence behavior of the free surf@calso visualized in figure 11(b), which is
responsible for the air carried in to the flow.
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a) Free Surface: t = 0,5sec.

b) Free Surface: t = 1,0sec.

Revista Tecnoldgica Maringd, v. 23, p. 99-118, 2014.



114

C) Free Surface: t = 2,0sec.

i
|

Zﬁ\}(

d) Free Surface: t = 3,0sec.
Figure 9: Free Surface in Hydraulic Jump Generatdn=0,5sec; b) t=1,0 sec; c¢) t=2,0sec and i3s3
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a) Free Surface: t = 3,5sec.

b) Free Surface: t = 4,0sec.
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c) Free Surface: t = 5,0sec.

Zﬁ\X

d) Free Surface: t = 6,0sec.
Figure 10: Free Surface in Transitional Hydraulienp Generation: a) t = 3,5sec; b) t = 4,0 sec; )
5,0sec and d) t = 6sec.

—
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(@) (b)

Figure 11. Gravitational Instability (a) and Turbulence Effét Free Surface (b).

The Figure 12, shows the agreement between expaiaimdata and numerical results. As
it is shown, the free surface in the experimentaladpresents two different behaviors: in
upstream, the level of agreement is higher thathéhydraulic jump. Therefore, in the first
experimental data line was immerged in to 90% d@wve fraction of water region. By the other
hand, on the hydraulic jump, the experimental fseeface is in between 70 e 80% volume
fraction of water region.

Experimental Dajl ——

\ ! ! | | \
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 12. Experimental [3] and Numerical Data Comparison.
9 CONCLUSIONS

Computational Fluid Dynamics (CFD) is a computesdzh tool for simulating the
systems behavior involving fluid flow. A CFD prognahas been used to simulate a hydraulic
problem. A numerical simulation was performed tohydraulic jump with a determinate
geometry and this simulation has demonstratedcéraain known complex features of hydraulic
jump can be resolved. In the results of simulati@s presented the hydraulic characteristics as:
pressure field, velocity field and the water voluinaction of the channel. The frames of the
transient simulation were presented and the wawesaed in the procedure of simulation was
denoted and explained. Firstly, a positive dowmstrewave is formed for hydraulic jump
generation. This simulation was interrupted aftevevformation (3 sec.), when the velocity of
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inflow was increased for steady hydraulic jump gatien. A new wave was introduce, a
negative upstream wave, which crashed againstesnvave (negative downstream wave).
Gravitational waves were visualized in the upstrezinthe hydraulic jump; these oscillatory
waves in the upstream of hydraulic jump represegtaaitational wave like the oceanic giant
waves (tsunamis). The turbulence behavior of the furface is also visualized, this phenomena
is responsible for the air carried in to the flov.comparison of the numerical results with
experimental data was showed for validation of $ivaulation. Two different behaviors are
showed in this comparison: the free surface in éRperimental data presents the level of
upstream agreement higher than in the hydrauligjuftherefore, in the first the experimental
data line was immerged in to 90% of volume fractodrwater region. By the other hand, in the
hydraulic jump, the experimental free surface ibéatween 70 e 80% volume fraction of water
region. As conclusion of this problem in hydraukmgineering, it can be said that the
Computational Fluid Dynamic represents a good appration for this hydraulic jump
phenomenon.
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