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Abstract. This paper proposes to present an application of CFD programs in a simulation of the 
flow in a hydraulic jump. Initially, it has been introduced the nonlinear representative equations 
of the flow and the turbulence models necessary to solve Navier-Stokes equations. Therefore, it 
will be demonstrated how to resolve these equations using the numerical methods by means of 
discretisetion and system solve. Finally, it will be shown a transient problem application in a 
simulation of a hydraulic jump of horizontal channel. The turbulence model used for proposed 
problem resolution was the Reynolds Stress Model (RSM), which better represents the physical 
flow characteristics of the problem. A comparison of the numerical results with experimental data 
has showed two different behaviors: the free surface in the experimental data presents the level of 
upstream agreement higher than in the hydraulic jump, therefore, in the first one the experimental 
data line was immerged in to 90% of volume fraction of water region, by the other hand, in the 
hydraulic jump, the experimental free surface is in between 70 and 80% of volume fraction of 
water region. 
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Resumo: Este trabalho propõe a aplicação de modelos matemáticos via programa CFD em uma 
simulação de escoamento em um ressalto hidráulico. Inicialmente, foram introduzidas as 
equações não-lineares e representativas do escoamento e dos modelos de turbulência necessários 
para resolver equações de Navier-Stokes. Serão apresentadas as formas de resolução destas 
equações usando-se os métodos numéricos por meio da discretização das equações do sistema. 
Finalmente, será aplicado na solução de um problema transiente na simulação de um ressalto 
hidráulico em canal horizontal. O modelo de turbulência usado para resolução do problema 
proposto foi o modelo de Stress de Reynolds (RSM), que melhor representa as características 
físicas e de escoamento do problema proposto. Uma comparação dos resultados numéricos com 
dados experimentais mostrou dois comportamentos diferentes: na superfície livre à montante do 
ressalto hidráulico a simulação apresenta um nível de aproximação mais elevado do que no salto 
hidráulico propriamente dito, da ordem de cerca de 90% comparando-se com os dados 
experimentais, por outro lado, no ressalto hidráulico a imersão da superfície livre situou-se entre 
70 e 80% do total dos resultados simulados comparando-se com os dados experimentais para esta 
região. 
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1 INTRODUCTION 
 
Computational Fluid Dynamics (CFD) is a computer-based tool for simulating the 

behavior of systems involving fluid flow, heat transfer, and other related physical processes. It 
works by solving the equations of fluid flow (in a special form) over a region of interest, with 
specified (known) conditions on the boundary of that region. 

Computers have been used to solve fluid flow problems for many years. Numerous 
programs have been written to solve either specific problems, or specific classes of problem. 
From the mid-1970’s the complex mathematics required to generalize the algorithms began to be 
understood, and general-purpose CFD solvers were developed. These began to appear in the early 
1980’s and required what were then very powerful computers, as well as an in-depth knowledge 
of fluid dynamics, and large amounts of time to set up simulations. Consequently, CFD was a 
tool used almost exclusively in research. Recent advances in computing power, together with 
powerful graphics and interactive 3-D manipulation of models mean that the process of creating a 
CFD model and analyzing the results is much less labor-intensive, reducing the time and 
therefore the cost. Advanced solvers contain algorithms, which enable robust solution of the flow 
field in a reasonable time. As a result of these factors, Computational Fluid Dynamics is now an 
established industrial design tool, helping to reduce design timescales and improve processes 
throughout the engineering world. CFD provides a cost-effective and accurate alternative to scale 
model testing, with variations on the simulation being performed quickly; offering obvious 
advantages (CFX, 2004). 

The set of equations that describe the processes of momentum, heat and mass transfer are 
known as the Navier-Stokes equations. These partial differential equations were derived in the 
early nineteenth century. They have no known general analytical solution but can be discretised 
and solved numerically. Equations describing other processes, such as combustion, can also be 
solved in conjunction with the Navier-Stokes equations. Often, an approximating model is used 
to derive these additional equations, turbulence models being a particularly important example. 
There are a number of different solution methods that are used in CFD codes. The most common, 
and the one on which Software is based, is known as the finite volume technique. In this 
technique, the region of interest is divided into small sub-regions, called control volumes. The 
equations are discretised and solved iteratively for each control volume. As a result, an 
approximation of the value of each variable at specific points throughout the domain can be 
obtained. In this way, one derives a full picture of the behavior of the flow (CFX, 2004). 

This paper proposes to present an application of CFD programs in a simulation of the 
flow in a hydraulic jump. Initially, it has been introduced the nonlinear representative equations 
of the flow and the turbulence models necessary to solve Navier-Stokes equations. Therefore, it 
will be demonstrated how to resolve theses equations using the numerical methods by means of 
discretisetion and system solve. Finally, it will be shown a transient problem application in a 
simulation of a hydraulic jump of horizontal channel. The turbulence model used for proposed 
problem resolution was the Reynolds Stress Model (RSM), which better represents the physical 
flow characteristics of the problem. 

 
2 TRANSPORT EQUATIONS 

 
The hypothesis being considered of the continuous and the Newtonian fluids (Figure 1), 

the equations associated to the conservation beginnings are had (LESIEUR, 1996).  
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Figure 1. Control Volume for Mass Balance and Momentum 
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where: u  is the velocity vector and ρ  is the fluid density.  
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where: p is the pressure, µ  is cinematic dynamic and t is the time.   
The convective flow term of the momentum also expresses the non-lineal interactions 

among the several scales that compose the spectrum of energy typical of the flow.  
• The Energy Equation. 
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where: T is the temperature; α is thermal conductivity;  SE is the energy source.   
 

3 REYNOLDS AVERAGE NAVIER-STOKES (RANS) 
 
The basics Navier-Stokes equations are modified to represent the instantaneous variable 

how an average variable composition. Using the average functions proprieties, the equation for 
the average flow is obtained. These news equations, due to the original non-linear equations, 
contain terms that involve the products of speeds buoyancy in different directions. Theses 
buoyancy terms do not have the definitive equation and give origin the eddy viscosity. For 
example, a velocity vector u may be divided into an average component, u , and a time varying 
component, 'u  (LESIEUR, 1996). 
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The Equations below shows the Reynolds Equation for the incompressible flow. 
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where: u..∇= µτ  is the molecular stress tensor, SM is source term of momentum equation. 
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where: Ø is transport variable; Γ is diffusivity and SØ is source term of transport equation.  
The continuity equation has not been altered but the momentum and scalar transport 

equations contain turbulent flux terms additional to the molecular diffusive fluxes. These are the 

Reynolds stress, '' uu ×ρ , and the Reynolds flux, φρ 'u . These terms arise from the nonlinear 
convective term in the un-averaged equations. They reflect the fact that convective transport due 
to turbulent velocity fluctuations will act to enhance mixing over and above that caused by 
thermal fluctuations at the molecular level. At high Reynolds numbers, turbulent velocity 
fluctuations occur over a length scale much larger than the mean free path of thermal 
fluctuations, so that the turbulent fluxes are much larger than the molecular fluxes (CFX, 2004). 

 
4 TURBULENCE MODELS 

 
Turbulent flows are characterized by fluctuating velocity fields. These fluctuations mix 

transported quantities such as momentum, energy, and species concentration, and cause the 
transported quantities to fluctuate as well. Since these fluctuations can be of small scale and high 
frequency, they are too computationally expensive to simulate directly in practical engineering 
calculations. Instead, the instantaneous (exact) governing equations can be time-averaged, 
ensemble-averaged, or otherwise manipulated to remove the small scales, resulting in a modified 
set of equations that are computationally less expensive to solve. However, the modified 
equations contain additional unknown variables, and turbulence models are needed to determine 
these variables in terms of known quantities (WILCOX, 2000). 

The highlights turbulences models in the bibliographies are presented below. 
• One Equation Model. 

o Spalart-Allmaras model. 
• Two Equations Models.] 
• k – ε  Model 

o Standard k – ε  Model. 
o Renormalization-group (RNG) k – ε Model. 
o Realizable k – ε Model. 

• k – ω  Model. 
o Standard k – ω   Model. 
o Shear stress transport (SST) k – ω  Model. 

• v2 – f Model.  

102 



Revista Tecnológica                                   Maringá, v. 23, p. 99-118, 2014. 
 

• Reynolds stress model (RSM)  
• Large eddy simulation (LES) model  
• Detached Eddy Simulation (DES) model. 

In the above item, have being increase computational effort in the models upper to down, 
due to physics variable additions (WILCOX, 2000).  

In this problem, the Turbulence Model used for calculation was The Reynolds Stress 
Model. 

 
4.1 THE REYNOLDS STRESS MODEL (RSM) 

 
The Reynolds Stress Model involves calculation of the individual Reynolds Stresses, 

'' uu× , using differential transport equations. The individual Reynolds stresses are then used to 
obtain closure of the Reynolds-averaged momentum equation. 

The exact form of the Reynolds stress transport equations may be derived by taking 
moments of the exact momentum equation. This is a process wherein the exact momentum 
equations are multiplied by a fluctuating property, the product then being Reynolds-averaged. 
Unfortunately, several of the terms in the exact equation are unknown and modeling assumptions 
are required in order to close the equations. The Reynolds stress transport equations are presented 
together with the modeling assumptions required to attain closure.  

The exact transport equations for the transport of the Reynolds stresses, '' uu ×ρ , may be 
written as follows (LAUNDER ET AL., 1975) (SMAGORINSKY, 1963): 
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where P and G are shear and buoyancy turbulence production terms of the Reynolds 
stresses respectively and C is a constant. Buoyancy turbulence terms are controlled in the same 
way as for the k- and k- model. 

The transport of the Reynolds stresses can be written in index notation as. 
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where ij is the pressure-strain correlation, and Pij, the exact production term, is given by: 
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As the turbulence dissipation appears in the individual stress equations, an equation for e 
is still required. This now has the form: 
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One of the most important terms in Reynolds stress models is the pressure-strain 
correlation, ij.  

The pressure strain correlations can be expressed in the general form: 

wijijijij ,2,1, φφφφ ++=                                                                                                        (11) 

where 1,ijφ is the slow pressure-strain term, also known as the return-to-isotropy term, 2,ijφ  

is called the rapid pressure-strain term, and wij ,φ is the wall-reflection term.  
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The slow pressure-strain term, 1,ijφ , is modeled as.  








 −′′= kuu
k

C ijjiij δρφ ε
3
2

11,                                                                                                (12) 

with C1 = 1,8.  
The rapid pressure-strain term, φij,2, is modeled as. 
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where C2 = 0,60,  Pij is defined as in Equation 9, and Cij  is convection term in the 
transport of the Reynolds stress equation, kkPP 2

1=  and kkCC 2
1= .  

The wall-reflection term, φij,w, is responsible for the redistribution of normal stresses near 
the wall. It tends to damp the normal stress perpendicular to the wall, while enhancing the 
stresses parallel to the wall. This term is modeled as equations (4) and (5).  
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where 5,01 =′C ; 3,02 =′C ; nk is the xk component of the unit normal to the wall, d is the 

normal distance to the wall, and  κµ /4
3

CC =l , where 09,0=µC  and κ  is the von Kármán 

constant ( 4187,0=κ ). 
 

5 NUMERICAL DISCRETISATION 
 
Analytical solutions to the Navier-Stokes equations exist for only the simplest of flows 

under ideal conditions. To obtain solutions for real flows a numerical approach must be adopted 
whereby the equations are replaced by algebraic approximations, which may be solved using a 
numerical method. 

 

 
 

Figure 2. Volume Finite Surface (CFX, 2004) 
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This approach involves discretising the spatial domain into finite control volumes using a 
mesh. The governing equations are integrated over each control volume, such that the relevant 
quantity (mass, momentum, energy etc.) is conserved in a discrete sense for each control volume. 
The Figure 2 shows a typical mesh with unit depth (so that it is two-dimensional), on which one 
surface of the finite volume is represented by the shaded area [1]. 

It is clear that each node is surrounded by a set of surfaces, which comprise the finite 
volume. All the solution variables and fluid properties are stored at the element nodes. Consider 
the mean form of the conservation equations for mass, momentum and a passive scalar, expressed 
in Cartesian coordinates (CFX, 2004): 
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where: effΓ  = Γ + TΓ ; TΓ  is the turbulence diffusivity. 

These equations are integrated over a control volume, and Gauss’ divergence theorem is 
applied to convert some volume integrals to surface integrals. For control volumes that do not 
deform in time, the time derivatives can be moved outside of the volume integrals and the 
equations become: 
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where V and s respectively denote volume and surface regions of integration, and dnj are 
the differential Cartesian components of the outward normal surface vector. The surface integrals 
are the integrations of the fluxes, whereas the volume integrals represent source or accumulation 
terms. Changes to these equations due to control volume deformation are presented below. 

The first step in solving these continuous equations numerically is to approximate those 
using discrete functions. Now consider an isolated mesh element such as the one shown below. 

 

105 



Revista Tecnológica                                   Maringá, v. 23, p. 99-118, 2014. 
 

 
Figure 3. Isolated Mesh Element (CFX, 2004). 

The surface fluxes must be discretely represented at the integration points to complete the 
conversion of the continuous equation into their discrete form. The integration points, ipn, are 
located at the centre of each surface segment in a 3D element surrounding the finite volume. 

The discrete form of the integral equations is written as (CFX, 2004): 
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where V is the control volume, the subscript ip denotes an integration point, the 
summation is over all the integration points of the finite volume, ∆ nj is the discrete outward 
surface vector, ∆ t is the timestep. Note that the First Order Backward Euler scheme has been 
assumed in this equation, although a second order scheme is also available as discussed below. 
Superscripts o refers to the old time level. The discrete mass flow through a surface of the finite 
volume is denoted by ipm& and is given by (CFX, 2004): 

( )o

ipjjip nUm ∆= ρ&                                                                                                              (26) 

 
5.1 THE COUPLED SYSTEM OF EQUATION 

 
The linear set of equations that arise by applying the Finite Volume Method to all 

elements in the domain are discrete conservation equations. The system of equations can be 
written in the form: 

∑ =
nbi

ii
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i ba φ                                                                                                                      (27) 
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where φ  is the solution, b the right hand side, a the coefficients of the equation, i is the 
identifying number of the finite volume or node in question, and nb means “ neighbor”, but also 
includes the central coefficient multiplying the solution at the ith location. The node may have 
any number of such neighbors, so that the method is equally applicable to both structured and 
unstructured meshes. The set of these, for all finite volumes constitutes the whole linear equation 
system. For a scalar equation (e.g. enthalpy or turbulent kinetic energy), each nb

ia , nbφ  and bi is a 

single number. For the coupled, 3D mass-momentum equation set they are a (4 x 4) matrix or a (4 
x 1) vector, which can be expressed as: 
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It is at the equation level that the coupling in question is retained and at no point are any 
of the rows of the matrix treated any differently (e.g. different solution algorithms for momentum 
versus mass). The advantages of such a coupled treatment over a non-coupled or segregated 
approach are several: robustness, efficiency, generality and simplicity. These advantages all 
combine to make the coupled solver an extremely powerful feature of any CFD code. The 
principal drawback is the high storage needed for all the coefficients. 

The program uses a Multigrid (MG) accelerated Incomplete Lower Upper (ILU) 
factorization technique for solving the discrete system of linearised equations. It is an iterative 
solver whereby the exact solution of the equations is approached during the course of several 
iterations. 

The linearised system of discrete equations described above can be written in the general 
matrix form: 

[ ][ ] [ ]bA =φ                                                                                                                        (28) 
where [A] is the coefficient matrix, [] the solution vector and [b] the right hand side.  
The above equation can be solved iteratively by starting with an approximate solution, fn, 

that is to be improved by a correction, ’, to yield a better solution, fn+1, i.e. 


n +1 =n + ’  
where is a solution of with rn, the residual, obtained from, Repeated application of this 

algorithm will yield a solution of the desired accuracy. By themselves, iterative solvers such as 
ILU tend to decrease rapidly in performance as the number of computational mesh elements 
increases. Performance also tends to decrease rapidly if there are large element aspect ratios 
present. The performance of the solver can be greatly improved by employing a technique called 
‘multigrid’ (CFX, 2004).  

 
6 THE HYDRAULIC JUMP 

 
The Hydraulic Jump is a phenomenon that is formed whenever flow changes from 

supercritical to sub critical flow. In this transition from supercritical to sub critical flow, water 
surface rises abruptly, surface rollers are formed, intense mixing occurs, air is entrained, and a 
large amount of energy is usually dissipated. By utilizing these characteristics, a hydraulic jump 
can be used to dissipate energy, to mix chemicals, or to act as an aeration device (CHAUDHRY, 
1993). 
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The Figure 4 represents the hydraulic jump characteristics that occur in horizontal or in 
small-sloped channels for transient flow. There is reduction average velocity, in direction to the 
flow, with a presence of a turbulence accentuated. If the raise of water surface is high, the 
surfaces in the section of hydraulic jump make almost regular water eddies in relatively control 
volume position. The water mass buoyancy advances the air entrainment in the flow appear the 
air bubbles. The turbulence in hydraulic jump and the eddy movement produce important energy 
dissipation (PORTO, 2004). 

The hydraulic jump is confined between the flow depths upstream, where the flow is 
torrential, and downstream, where the flow is fluvial, which the pressure distribution is 
hydrostatic. The flow depths upstream, y1, and downstream, y2, of the jump are called sequent 
depths, or conjugate depths. The difference, y2 – y1, is called hydraulic jump depths and it is an 
important parameter in hydraulic jump characterization like energy dissipater. The height 
difference in the energy line ∆E is called hydraulic jump energy loss (CHAUDHRY, 1993). 
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E∆
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Figure 4. Hydraulic Jump (PORTO, 2004). 

 
To simplify the derivation, consider a rectangular, horizontal channel will be considered, 

as our problem. Since the amount of energy loss in the jump is not known firstly, it cannot be 
applied the energy equation directly. In transient flow, the momentum theorem shows that all 
forces in control volume mobile are equal to the momentum flow on the control surface. 
Therefore, on control of mobile volume operates the pressure distribution forces in section 1 and 
2 in according to Figure 4. This way, the one-dimensional flow can be expressed as (PORTO, 
2004):       

For relatively velocity (urel) on control of mobile volume:  
Section 1: urel = u1 + uw  
Section 2: urel = u2 + uw 

Continuity: ( )∫ =
CS

dA 0.uρ ( ) ( ) 2211 yuuyuu ww +=+→                                                   (29) 

Momentum: ( )∑ ∫=
SC

x dAF uu ρ or

( ) ( ) ( ) ( )wwww uuAuuuuAuuFF +++++−=− 22211121 ρρ                                                         (30) 

where: A1 = b.y1 and A2 = b.y1 are section area in 1 and 2; b is width of rectangular 
channel. 
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Of the Static of Fluids, the force on a plain region is given by: AygF ...ρ= , on which, 

2

y
y =  is the vertical distance between the free surface and the gravity center in the section, 

therefore: 
( ) ( ) ( ) ( )wwww uuAuuuuAuuAygAyg +++++−=− 2221112211 ..                                     (31) 

For rectangular section the equation 31 can be written as: 

( ) ( ) ( ) 2
2

21
2

1
2
2

2
1.

2

1
yuuyuuyyg ww +++−=−                                                                   (32) 

Using the continuity: 

( ) ( ) ( ) 22
2

2
12

11
2

1
2
2

2
1

11

2

1
y

y

y
uu

g
yuu

g
yy ww +++−=−                                                         (33) 

or 

( )21
1

2
1 .2

.
yy

y

yg
uuc w +=+=                                                                                          (34) 

where: c is celerity.  

In equation 34, if uw = 0 







+=→

1

2

1

2

1

1 1
.2. y

y

y

y

yg

u
                                                     (35) 

Now, the Froude number, 
1

1
1

gy

u
Fr = , Hence, Eq 35 may be written as: 

02 2
1

1

2

2

1

2 =−+







Fr

y

y

y

y
                                                                                                   (36) 

Solution of this equation yields [6]. 

( )2
1

1

2 811
2

1
Fr

y

y
++−=                                                                                                   (37) 

Note that the negative sign with the radical term is neglected because it given a negative 
ratio, which is physically impossible. This equation specifies a relationship between the depths 
upstream of the jump in terms of Fr1. Proceeding similarly; we can derive the following equation 
in terms of Fr2 (CHAUDHRY, 1993). 

( )2
2

2

1 811
2

1
Fr

y

y
++−=                                                                                                   (38) 

 
7 NUMERICAL SIMULATION 

 
The purpose of this paper is two-fold. First, it is intended to demonstrate that certain 

known complex features of the hydraulic jump can be resolved. Secondly, it is intended to 
compare numerical results with experimental data. To solve the problem it has been used the 
Reynolds Stress Model for multiphase Free Surface. 

As it is shown in Figure 4, the geometry of the problem is: 
 

• y1 = 0,0372 m;  y2 = 0,1800 m; b = 0,1000 m and l (length) = 3,0000 m. 
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The simulation could be divided in two parts: First of all, for wave formation to introduce 
a velocity smaller than that velocity for Froude number for steady hydraulic jump; second, it has 
been used the velocity for steady wave in hydraulic jump after 3 seconds of simulation. This 
Froude Number (Fr1 = 3,76) defines a transitory hydraulic jump, which characterizes an 
oscillatory upstream in the surface of hydraulic jump. 

The mesh used for simulation is presented in Figure 5. On the left, it is shown the entire 
domain and on the right there is the vertical detail of mesh. On the button it has been used mesh 
cell of 0,01 m and on the top the mesh cell is about 0,05 m. 

 The domain, Fluids and Simulation characteristics as well as the initial and boundary 
conditions are shown in Table 1. 

 
Table 1: The Domain, Fluids and Simulation characteristics, initial and boundary conditions. 

Domain 
Number of Nodes 65 362 
Number of Tetrahedrons Elements 354 004 
Number of Faces 16 616 
Fluids 
Water Air 
Temperature 25 oC Temperature 25 oC 
Dynamic 

Viscosity 
8,899*10-4 kg.m-

1.s-1 
Dynamic 

Viscosity 
1,831*10-5 kg.m-

1.s-1 

Density 998 kg.m-3 Density 1,185 kg.m-3 

Surface Tension 
Coef. 

0,0732 N.m-1        

Simulation 
Time step 0,005 s 
Simulation Time 6,6 s 
Process Characteristic Two Processor In Parallel  
 CPU Time Processing 4,61*106 s 

Boundary and Initial Conditions 
Button and sides   Walls 

Top Opening 

Inlet (t < 3 s) 
u(Water) = 1,0 m.s-1; u(Air) = 0; v(Water) = 0; v(Air) = 0; w(Water) = 0; 

w(Air) = 0; p(Water) = ρ.g.y1 – ρ.g.y; p(Air) = 0    

Inlet (t > 3 s) 
u(Water) = 2,27 m.s-1; u(Air) = 0; v(Water) = 0; v(Air) = 0; w(Water) = 0; 

w(Air) = 0; p(Water) = ρ.g.y1 – ρ.g.y; p(Air) = 0    

Outlet 
du/dx(Water) = 0; du/dx(Air) = 0; dv/dx(Water) = 0; dv/dx(Air) = 0; 

dw/dx(Water) = 0; dw/dx(Air) = 0; p(Water) = ρ.g.y2 – ρ.g.y; p(Air) = 0    

Initial Condition 
u(Water) = 1,0 m.s-1; u(Air) = 0; v(Water) = 0; v(Air) = 0; w(Water) = 0; 

w(Air) = 0; p(Water) = ρ.g.y1 – ρ.g.y; p(Air) = 0    
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Figure 5. Mesh used in Numerical Simulation. 

 
8 RESULTS 

 
The numerical results obtained are showed in fig.6 to 8, after 6 seconds of simulation. In 

fig.6 the fraction of water volume in relation to the air volume, or it is, the value 1.00 represents 
the presence of 100% of water and 0.00 represents 0% of water or 100% of air. 

Fig. 7 shows the formed pressure on field. The profile of hydraulic jump downstream 
joins closely with the static pressure or is slightly bigger. The oscillatory wave formed by the 
hydraulic jump regime provokes this increase of pressure. 

Figure 8 presents the velocity field in every channel domain in a lateral view. In the 
entrance region the highest flow velocity can be observed in the channel and the formation of 
velocity profiles development. The formation of oscillations on the upstream amount on the free 
hydraulic jump is due to the instabilities caused by the superficial tension (instability of Kelvin-
Helmholtz) and more predominantly the gravitational effect (instability of Rayleigh-Taylor) 
(LESIEUR, 1996). 

 

 

 
Figure 6. Volume Fraction of Water in Hydraulic Jump. 
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Figure 7. Pressure in Hydraulic Jump. 

 

 

 
Figure 8. Velocity in Hydraulic Jump. 

The wave propagation of hydraulic jump generation is shown in fig. 9 in a break of 0.5 to 
3.0 seconds. As it can be observed in frames of free surface for 90% of water a wave dislocates 
from downstream to the amount upstream. It happens because of the high inflow and outflow 
fixed physically as well as because of the entrance velocity that establish the number of Froude, 
which provide the formation of so called positive wave of downstream. 

The simulation was interrupted after wave formation (3 sec.), when the velocity of inflow 
has been increased for steady hydraulic jump generation – Figure 10. A new wave has been 
introduced, a negative upstream wave, which crash against earliest wave (negative downstream 
wave) – frame of t = 4.0 sec. In the next frame (for t = 5.0 sec), the only one wave was formed 
and, finally, the quasi-steady wave generated is shown in the final frame (for t = 6.0 sec) – Figure 
10. 

Oscillatory waves on the upstream of hydraulic jump as showed in Figure 11(a), which 
represents a gravitational wave like the oceanic giants waves (tsunamis) (INGARD, 1988) 
(PENNA, 1984). The obtained Froude Number (Fr1 = 3.76) define a transitory hydraulic jump 
which characterize an oscillatory upstream on the surface of hydraulic jump, is shown in Figure 
11(b). The turbulence behavior of the free surface is also visualized in figure 11(b), which is 
responsible for the air carried in to the flow.  
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a) Free Surface: t = 0,5sec. 

 
b) Free Surface: t = 1,0sec. 
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c) Free Surface: t = 2,0sec. 

 
d) Free Surface: t = 3,0sec. 

Figure 9: Free Surface in Hydraulic Jump Generation: a) t=0,5sec; b) t=1,0 sec; c) t=2,0sec and d) t=3sec. 
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a) Free Surface: t = 3,5sec. 

 
b) Free Surface: t = 4,0sec. 
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c) Free Surface: t = 5,0sec. 

 
d) Free Surface: t = 6,0sec. 

Figure 10: Free Surface in Transitional Hydraulic Jump Generation: a) t = 3,5sec; b) t = 4,0 sec; c) t = 
5,0sec and d) t = 6sec. 
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(a)                               (b) 

Figure 11. Gravitational Instability (a) and Turbulence Effect in Free Surface (b). 
 
The Figure 12, shows the agreement between experimental data and numerical results. As 

it is shown, the free surface in the experimental data presents two different behaviors: in 
upstream, the level of agreement is higher than in the hydraulic jump. Therefore, in the first 
experimental data line was immerged in to 90% of volume fraction of water region. By the other 
hand, on the hydraulic jump, the experimental free surface is in between 70 e 80% volume 
fraction of water region. 

 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 12. Experimental [3] and Numerical Data Comparison. 

 
9 CONCLUSIONS 

 
Computational Fluid Dynamics (CFD) is a computer-based tool for simulating the 

systems behavior involving fluid flow. A CFD program has been used to simulate a hydraulic 
problem. A numerical simulation was performed to a hydraulic jump with a determinate 
geometry and this simulation has demonstrated that certain known complex features of hydraulic 
jump can be resolved. In the results of simulation was presented the hydraulic characteristics as: 
pressure field, velocity field and the water volume fraction of the channel. The frames of the 
transient simulation were presented and the waves formed in the procedure of simulation was 
denoted and explained. Firstly, a positive downstream wave is formed for hydraulic jump 
generation. This simulation was interrupted after wave formation (3 sec.), when the velocity of 

Experimental Data 
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inflow was increased for steady hydraulic jump generation. A new wave was introduce, a 
negative upstream wave, which crashed against earliest wave (negative downstream wave). 
Gravitational waves were visualized in the upstream of the hydraulic jump; these oscillatory 
waves in the upstream of hydraulic jump represent a gravitational wave like the oceanic giant 
waves (tsunamis). The turbulence behavior of the free surface is also visualized, this phenomena 
is responsible for the air carried in to the flow. A comparison of the numerical results with 
experimental data was showed for validation of the simulation. Two different behaviors are 
showed in this comparison: the free surface in the experimental data presents the level of 
upstream agreement higher than in the hydraulic jump. Therefore, in the first the experimental 
data line was immerged in to 90% of volume fraction of water region. By the other hand, in the 
hydraulic jump, the experimental free surface is in between 70 e 80% volume fraction of water 
region. As conclusion of this problem in hydraulic engineering, it can be said that the 
Computational Fluid Dynamic represents a good approximation for this hydraulic jump 
phenomenon. 
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