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Abstract: This work analyzes, from the effects related to the processes of transportation of 
carrier and the changes in the electronic structure of semiconductors materials due to the 
presence of defects and disorders in the alloys crystalline superlattice. These defects are 
located in specific areas of the material and either interact or remain inert. In general, they are 
described by local wave functions. The study of superlattices of semiconductor crystal 
considers important parameters such as disorder effects in crystals and the alternate periodic 
growth of the layer of two semiconductors with different gaps and minigaps energies. The 
quantum mechanical calculations are applied for determining the physical properties of the 
semiconductors crystals. This study encompasses the effects of defects and the crystalline 
disorders evaluation by quantum mechanics. Further, the presence of the defects in the 
periodic, quasiperiodic and disordered arrangements is discussed. The theoretical approach is 
used to understand the mechanism and the results of experimental techniques in which are 
characterized the current and optic transportation of a semiconductor crystal. 
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Resumo: Este trabalho analisa a partir dos efeitos relacionados com os processos de 
transporte de portador e as mudanças na estrutura dos materiais semicon dutores eletrônicos 
devido à presença de defeitos e desordens na super-rede deligas cristalina. Estes defeitos estão 
localizados em áreas específicas do material e quer pode interagir permanetemente. Em geral, 
eles são descritos por funções de onda locais. O estudo de superredes de cristal semicondutor 
considera parâmetros importantes, tais como os efeitos da desordem em cristais e o 
crescimento periódico alternativo da camada de dois semicondutores com diferentes 
espaçamentos e minigaps de energias. Os cálculos de mecânica quântica são aplicadas para a 
determinação das propriedades físicas dos cristais semicondutores. Este estudo abrange os 
efeitos de defeitos e a avaliação de pertubação na estrutura cristalina via mecânica quântica. 
Além disso, discute-se a presença dos defeitos nos arranjos periódicos, quasiperiódicos e 
desordenados. A abordagem teórica é utilizado para compreender o mecanismo e os 
resultados das técnicas experimentais em que se caracterizam o transporte de corrente e de 
uma óptica de cristais de semicondutores.  
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1 INTRODUCTION 
 

The solid structures and especially the composition of the alloys are always 
investigated by the scientific field, and to refer the properties solids and heterostructures 
formed. Scientists over time is the strong tool use quantum mechanics to understand and 
make appropriate interpretations of the properties observed in these materials, the knowledge 
of these properties contribute to the technological development in the area of 
communications, data processing and in various electronics (Bastard,1986). It is well known 
that the electricity-conducting materials are also good thermal conductors (copper). Properties 
such as electrical resistivity and thermal conductivity can be qualitatively explained by the 
classical theory. However, when going for a quantitative analysis of the same does not occur. 
The values obtained for various macroscopic parameters such as the resistivity and heat 
capacity are not explained by the classical theory, when it involves significant variations with 
temperature. Temperature affects the properties of electronic systems in a number of 
fundamental ways. The most fundamental of properties is the energy band gap,gE , which is 

affected by temperature according to the Varshni Equation ,described by equation (1): 
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where gE  is the band gap energy at absolute zero on the Kelvin scale in the given material, 

and Eα  and Eβ constants. Table 1 provides these constants for three material structures. 

 
Table 1.Varshni equation constants for GaAs, Si, and Ge. 

Material (0)( )gE eV  ( )E
eV

Kα  ( )E Kβ  

GaAs 1,519 5,41.10-4 204 

Si 1,170 4,73.10-4 636 
Ge 0,7437 4,77.10-4 235 
 
Table 1 and (1) are used to generate Figure 1, which shows how the band gaps of the 

three materials decrease as temperature increases (the labeled points are the band gap of each 
material at room temperature). 
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Figure 1. Energy band gap temperature dependence of GaAs, Si, and Ge. 

 
The structural defects in solids are an imperfection or we can say, the atoms are not 

fully organized in regular periodic arrangement in the crystal. Crystals typically are not 
perfect, and contain various imperfections or defects that affect many of its physical and 
mechanical properties.  

However, compositions which comprise the structures of metallic materials are 
profoundly affected by the presence of crystalline defects and certain characteristics are often 
intentionally modified by the introduction of controlled amounts of defects. However, the 
defects allow to control the electrical behavior and / or of the optical semiconductor materials 
and structures. These semiconductor materials have great applicability in industrial field. And 
the defects contained in the semiconductor stems essentially from the wrong defect and / or 
the wrong concentration and / or in the wrong position in the structures formed in 
semiconductor materials.  

It is important to note that some defects are formed in the semiconductor and point 
defect mainly depends on the vapor pressure of the components of the material composition. 
It is clear that the symmetrical dependence of a Schottky type AB type compound 
semiconductor. And, for the other types of defects such dependence is obtained in a similar 
way, but we know that some researchers have studied which can be seen in the literature 
(Bajaj, 2001). 

The semiconductor heterostructures obtained by joining different materials have been 
investigated intensively because of their unique properties that are not observed in 
homogeneous. It was possible to artificially create structures such as quantum wells, quantum 
wires, quantum dots and super-networks, having a great technological impact, with 
applications in the development of new electronic and optical devices.  These systems the 
exchange interaction between magnetic ions located and carrying the conduction and valence 
bands produces a Zeeman extremely large when compared with the conventional 
semiconductor. In the super-semi magnetic semiconductor networks, these effects are 
evidenced by the degeneracy of the spin in its unit cell. Soon, the heterostructures represent a 
practical one-dimensional confinement potential. In most cases, the special properties of the 
semiconductor heterostructures are due to the behavior of charge carriers (electrons and holes) 
in the potential containment previously designed (Cingolani; Ploog,1991). 

The present work is to analyze, from approaches developed, the physical model with 
strong concepts of quantum mechanics. This model, enabling discussion and understanding of 
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some fluctuations of energy, which causes the appearance of valence bands, suffer 
degeneration of disorder in semiconductor heterostructures. 
 
2 DEVELOPMENT IN THEORY 
 
2.1 INITIAL CONSIDERATION 
 

Crystalline materials are constantly being investigated by scientists, particularly those 
materials with the formation of semiconductor heterostructures. It is necessary to understand 
the operation of semiconductor materials with and without the presence of impurities, it is 
crucial to know their electronic structures (Adenilson ; Francesco, 2004). I.e., it is extremely 
important to the understanding of the energy levels of these materials, and how they are 
affected by the presence of other atoms.  This requires the application of quantum mechanics 
to describe the behavior of electrons as the free-electron theory, the effect of temperature on 
the Fermi distribution, density of state, the wave equation in a periodic potential, etc.  
Therefore, to understand the physical properties of metals, it is important to use the model of 
the Theory of Free Electron. This model tells us that the more weakly bound electrons of the 
constituents move freely through the crystal volume. The valence electrons of the atoms 
become conduction electrons and the forces between the conduction electrons and the ionic 
cores and the potential energy are negligible in the free electron model. 

Use or composition of the material to be applied, it is necessary to study the behavior 
of such heterostructures and if the atoms are not isolated, the interaction forces between them 
are significant. The electrons in crystals are grouped into energy bands separated by energy 
regions for which no orbital electrons. These energy gaps or band gaps are known as 
forbidden zones (gap), resulting from the interaction of the waves of the conduction electrons 
with ions of the crystal (Lourenço et al., 2004).  In the study of semiconductor super-
networks, the calculations are made in the dispersion relation, applying the Kronig-Penney 
model for one-dimensional periodic potential (approximated by rectangular wells). Figure 2 
shows the band structure of the GaAs semiconductor, which is representative of most 
semiconductor alloys formed from semiconductor materials that have the crystalline structure 
of the "zinc-blend", as is the case of the AlGaAs (Weisbuch et al., 1981). 
 

 
Figure 2. Band structure of the GaAs semiconductor characteristic of 

crystal structure of type "zinc-blend". 
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The valence bands are degenerate at the pointΓ . Confinement effects, such as, for 

example, quantum wells, raise this degeneracy. Close to 0k =
r

  the hole states have different 
curvatures as can see in Figure 1. The difference in the curvature of these states is known as 
the effective mass tensor m* in equation (1), represented by a 3x3 matrix mij. The effects of 
crystalline potential are expressed in the effective mass tensor that influences the dynamics of 
Bloch electrons. The effective mass tensor and its inverse are symmetric, 

2
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where m* is  the effective mass of charge carriers in the crystal lattice) causes the effective 
masses of holes occupying such states are different. Here, we use a simple notation (k  instead 

of ( )kε k
r

) suitable for 1D,or for an isotropic energy dispersion in 3D.  The isotropic energy 

means that ε  is dependent only on only onk k=
r

. In the most general case, the effect mass is 

defined as a tensor but we won’t go there. Note also that we are concerned with a non-
relativistic only. It is helpful to check the above definition is reasonable for a free electron. In 
this case, 

2 2
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2 e

k
k
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                                                                                                (3)                                                                        

 
where for  clarity often used m  to mean em ,the electron mass (Mesrine et al., 1997).    Here, 

we are taking only   the kinetic part, since the rest energy part, 2
em c  is just a constant. The 

energy dispersion ( )kε  of the electron in a crystal contains information about the quantum 
mechanical interaction between the “bare” electrons with the electronic of semiconductors 
crystal lattice. Due to this interaction, the electron might find itself a bit more difficult to 
move around or a bit easier to move around. 

As we shall see later on, this concept of “how easily the electron moves around” is the 
concept of the mobility, which is an important concept and is related partly to the effective 
mass. Among the structural composition AlGaAs and GaAs substrates generate offsets 
targeting high density which may extend to regions of its surface active.  The properties and 
performance based devices are greatly influenced by their structures which are linked to 
defects in epitaxial stress in the system of their energy levels. 
 
2.2 ENERGY LEVELS 
 

Semiconductors Superlattices consist in a grouping of layers of different 
semiconductors materials; for instance, A and B, which are periodically arranged for a 
superstructure such as ABBA…ABAB…BAAB.  
 



 

Revista Tecnológica                                Maringá, v. 24, p. 81-93, 2015 

 
Figure 3. Illustration of three superlattices schemes: a) Periodic superlattice formed by 

GaAs/AlGaAs; b) Potential profile and c) Dispersion of energy. 
 

Figure 3 shows the propagations; i.e., without disorder characterizing the metallic 
behavior of sample. In the above figure, DSL indicates the period of superlattices and W the 
width of miniband. The direction of growth of layers is seen in z direction. In characterizing 
electronic transportation in semiconductors heterostructures, it is usual to add the electronic 
effective mass and the microscopic effects of the crystalline net in the electron movement 
(Chen et al., 2004). The samples are formed of materials with different conduction bands, and 
therefore, the study of electronic transport in semiconductor heterostructures, a common 
practice is to incorporate electron effective mass in the microscopic effects of the crystal 
lattice in the movement of electrons.  

In this case, for example of a structure formed by A and B, the effective electron 

masses has two Am∗  and Bm∗ . In each, the wave function assumes the type Bloch ( ) ( )
i
zik z

kze u z  

where the periodic ( )kzu z  is regarded the same in both materials and ( , )i
zk i A B=  depends on 

the kinetic energy of the electron in each semiconductor layer. 
The wave functions of the super-network are determined by the condition continuity 

between the wave functions of each specific material, A Bψ ψ=  and the probability of the 

current density,
1 1A B

A Bm z m z

ψ ψ
∗ ∗

∂ ∂=
∂ ∂

, interfaces between A and B, the structure of the 

semiconductor material. 
 
2.3 QUANTUM WELL 
 

Quantum well is a system comprised of two semiconductors materials with gaps of 
different energies. Figure 4 shows the construction of heterostructures leagues of AlGaAs 
between two leagues of GaAs. 
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Figure 4. a) Quantum well; b) Potential profile of quantum well; z is the direction of growth 
in quantum well; Lw represents the width of quantum; e1 is the first level of electrons; hh1 

indicates the first level of heavy holes and lh1 is the first level of light holes. 
 

The origin of the potential in Figure 2 is explained by the difference of energy ∆Eg as 
follows: 
                     AlGaAs GaAs

g g gE E E∆ = −                                                                                  (4) 

 
In the above equation, Eg 

AIGaAs is the gap of AlGaAs material and Eg
GaAs , i.e., the gap 

of GaAs material. The difference of energy ∆Eg is distributed between the bands of valence 
and of conduction in several ways. In bulk GaAs at the point of symmetry of holes states have 
the same energy, ie, are rogue. For this reason, the transitions between electrons and holes 
occur between levels of electrons and heavy hole levels, because it distinguishes light heavy 
hole because of this degeneracy. Alloys AlGaAs /GaAs/AlGaAs, electrons are trapped in 
layers of GaAs by potential barriers of AlGaAs due to discontinuities of the conduction bands 
of both. Likewise, holes are trapped by the discontinuity in the valence bands.  

For a stoichiometric composition of the alloy AlxGa1-xAs has the same structure of 
GaAs, except that a fraction x of Ga atoms has been replaced by Al atoms quantities such as 
the lattice parameter, the dielectric constant, the  effective mass of the charge carriers in the 
energy gap, among others, depend on aluminum concentration (x) (Oliveira; Meneses; Da 
Silva,1999). 
  
3 DEVELOPMENT OF A THEORETICAL MODEL FOR SUPERLATTICE 

 
In order to obtain a superlattice it is necessary to repeat the same process for building a 

quantum well. Figure 5 below shows the construction of superlattices. 
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Figure 5. a) Superlattice builds by the over position of layers of A and B semiconductors 
materials; b) Penetration of wave functions at the barrier and wells and; c) Formation of 

energy minibands (for electrons and holes) along the superlattice. 
 

With the help of Quantum Mechanics it is possible to study the interaction between 
wave functions which describe the electrons in the potential wells. Consequently, the 
existence of an energy band (miniband) affects the transportation phenomenon of loads 
through the structure.  Figure 6 shows an infinite sequence of quantum wells of width L 
separated by barriers of thickness ℏ. 

 

 
Figure 6. Profile of potential energy of a segment of a superlattices with period d = L+h. 

 
Calculations for determining energies and wave functions in a potential well made by 

two semiconductors materials are shown below. The potential energy Vb(Z) is a periodic 
function with period d = L + h is given by (Akiyama et al., 2003). 

                    ( )   b b
n

V V z nd
+∞

=∞
= −∑                                                                           (5) 

 
Where: 

                  
, ( )

2( )

0, ( )
2

b

b

L
V for z nd

V z nd
L

for z nd
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 − ≥
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                                                   (6) 

 
For a superlattice with energy greater than the height of barrier, the following 

equations are defined: 
                   ( ) ( )     ( )                     w wik z nd ik z nd

w Z e eψ α β− −−= +                                    (7) 

 

For      
2

L
z nd− ≤                                                                                              (8) 
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( ) ( )

2 2     ( )     
b b

d d
ik z nd ik z nd

w Z e eψ γ δ
− − − − −

= +                                (9) 

 

For    
2 2

d
z nd− − ≤ h                                                                                           (10) 

 
However, when an electron with energy higher than the barrier height (E > 0) is 

affected by superlattice potential, its energy is given by: 
2 2 2 2

* *2 2
b x

b

k k
V

m m
ε = = − +h h

                                                                    (11) 

 
The periodicity of a potential can be determined by the operator of the superlattice. 

The autofunctions and autovalues can be demonstrated via Schrödinger equation, as follows 
(Schrödinger equation in one-dimensional case in the z direction) (Ter Haar D, 2004). 

                
2 2

* 2

( , ) ( , )
( , ) ( , )

2

z t z t
i V z t z t

t m z

ψ ψ ψ∂ ∂= − +
∂ ∂

h
h                                       (12) 

 
The crystal size is nd , where n is an integer, and impose periodic boundary conditions 

so that we ,
( ) ( )q qz nd zψ ψ+ =

, L is the length of the shaft. Thus, using the Bloch theorem, 

we find that 2qnd pπ=  with p  integer. I.e., q  is real and discreet, being 
2

nd
π

 the spacing 
between two consecutive values. Is well defined space of vectors q, which is called reciprocal 

space. The segment 
,d d

π π− 
  in reciprocal space is known as the first Brillouin zone 

(Laureto,2002). The functions qψ
 must be continuous, as its first derivative.Thus, the 

interface between a well and a barrier, we have: 
( ) ( ) ( ) ( )2 2 2 2w w b b

L h hLik ik ik ik
e e e eα β β δ− −+ = +                                                            (13) 

 

{ } { }( ) ( ) ( ) ( )2 2 2 2w w w w
L L L Lik ik ik ik

w bik e e ik e eα β γ δ− − −− = −                                          (14) 

 
In the interface between a barrier and a well are: 

( ) ( ) ( )2 2( 1 )2
w b

h hik ik

q
Lz n d e eψ γ δ −= + − == +                                                      (15) 

 
Again using the Bloch theorem we can rewrite, 

( ( 1) )2q
Lz n dψ = + −                                                                                           (16) 

 
as, 

( )( ( 1) ) ( )
2 2

iqd
q q

L L
z n d e z ndψ ψ= + − = = −                                                     (17) 

 
Proceeding with the calculations for the derivatives, we arrive at a system of four 

equations and four unknowns ( , , , )α β γ δ ,admits nontrivial solution if the following equation 
is satisfied: 
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1 1
cos( ) cos( )cos( ) ( ) ( )

2w b w bqd k L k h sen k L sen k Lξ
ξ
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b

w

k
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Above only consider the situation where we have propagating states with energies 

above the top of the barrier( )0ε ≥
. Thus, equation (16) gives us the levels of virtual states 

such heterostructures. However, states that interest us most are the quasi-particle states in 

which bound 0bV ε− ≤ ≤ .In this case, the wave functions are evanescent in the barrier and 
simply make the substitutions: 

bkb iκ→  with   
2

2
,b

m
i

εκ ξ ξ
∗−= →

h
,being  b

bk
κξ =                                    (20) 

 
in equation (16) and she is: 

1 1
cos( ) cos( )cosh( ) ( ) h( )

2w b w bqd k L h sen k L sen hκ ξ κ
ξ

 = − + 
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                          (21) 

 

We note that equation (21) diverges exponentially with increasing h( )bheκ
.To maintain 

the convergence of the solution; we must have the coefficients which multiply these terms 
may be null, which occurs when: 

1 1
cos( ) ( ) 0

2w wk L sen k Lξ
ξ

 − − + = 
 

                                                                  (22) 

 
Equation (20) is the same which gives the values of the energy levels of simple square 

shaft. Thus, we conclude that the energy levels of the structure of the superlattices 
semiconductor multi-quantum wells are a hybridization of the energy levels of the well 
isolated. These levels hybridized form miniband energy when the overlap of the wave 
functions of each well through the finite barrier is very large (Vurgaftman; Meyer.; Ram-
Mohan, 2001). Equation (20) provides an implicit relationship between the energy levels of 
states allowed in the pit and the parameters of the sample. The interval [-1, 1], the right side of 
this equation, 

1 1
( ) cos( )cosh( ) ( ) ( )

2w b w bF k L h sen k L senh hε κ ξ κ
ξ

 = − − 
 

                            (23), 

 

shows the states allowed to structure multi-quantum wells as it is equal tocos( )qd .   
The following Figures 5 and 6 show the function F (ε) to a structure with the following 
parameters: width of the barrier, h = 5 nm, pit width, L = 15 nm; effective mass of the barriers 
and wells equal a m* = 0.067 m, and barrier height, V = 400 meV. Figure  5 shows the graph 
of the function F (ε) as a function of electron energy, ε, as a whole, and the Figure 7 shows 
the detail of the same function in the range -1 < F (ε) <1. 
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Figure 7. Graph of the right side of equation (19) for barrier height V = 0.4 eV, m* = 0.067 

m, G = 15 nm and h = 5 nm. 
 

 
Figure 8. Figure 5 illustrates detail of the allowed states for the same superlattices. 

 
For the situation shown above, Figures 5 and 6 wells of the structure of multi-quantum 

wells have four energy levels are allowed. We observed that the slope of the curves indicate 
the widths of these energy levels for delimit an energy band permitted for the electron in the 
crystal structure. 
 
4 CONCLUSIONS 
 

Structural imperfections in semiconductor superlattices have a strong influence on the 
optical properties of semiconductor heterostructures that form the basis of many current 
photonic and optoelectronic devices. A clear understanding of the origin of these defects is 
essential for their control and minimizes its effects. In this work, we discuss the general 
features related to structural imperfections of interfaces and the formation of compound 
semiconductors involving mixing of three or more chemical elements. Through the analysis 
of different systems forming semiconductor quantum wells, we found a high degree of 
sensitivity of the energy spectra of the effects of these imperfections the superlattices. 
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Many advantages are observed in the utilization of these materials, principally when 
concerns its optic and electric properties. Valuable informations are obtained from 
temperature studies such as the electron confinement in quantum wells, quantum threads and 
quantum points. 

This theoretical Model evidentiated some properties of heterostructures where 
disorders are diversified leading to interesting and surprisingly results. 

Calculations made at level of band energy can be solved through equation of 
Schrödinger. This Model also showed that the introduction of dopants in a semiconductor 
crystal determine the bearers (electron or hole) responsible for its conductivity as predicted by 
the laws of quantum mechanics. 
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