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Abstract: Stress concentration factors (SCFs) for some set of fixed geometrical and loading 

cases can be obtained experimentally, analytically, and computationally. To accomplish this, 

tables and charts that relate a geometrical ratio and a specific type of loading with their 

correspondent SCF are available. Although these resources are accessible for the most 

common cases, their reading and interpretation processes often imply parallax error. To 

overcome this difficulty, the interpolated equations may be applied. However, the application 

of the adequate equation in a non-structured manner can be time consuming within a whole 

design process. Thus, the study of two geometrical cases of plates under tension in elastic 

range enabled the comparison of SCFs obtained from three sources: (a) chart reading; (b) 

approximate proven equations; and (c) specific computer program developed by the author in 

Microsoft Visual Basic 6.0
®

. The relative error between the SCFsextracted from the software 

and those from the charts presentedvalues up to 1.786% and 2.588% for the first and second 

cases, respectively. Additionally, a total agreement up to the third decimal placewas reached 

between interpolated equations used in the developed software and equations presented by 

some authors, which validates the software in the applied domain. 

Keywords: Stress concentration factor. Software. Tension. Plate. 

 

Resumo:Fatores de concentração de tensão (FsCT) podem ser obtidos experimental, 

analítica e computacionalmente para alguns conjuntos de casos fixos de geometria e 

carregamento. Com vistas a obter estes fatores, tabelas e gráficos que relacionam uma razão 

geométrica e um tipo de carregamento específico com seu FCT correspondente estão 

disponíveis. Apesar de estes recursos estarem disponíveis para os casos mais comuns, o 

processo de leitura e interpretação destas fontes frequentemente implicam em erros de 

paralaxe. De modo a transpassar esta dificuldade, as equações aproximadas ou interpoladas 

podem ser aplicadas. Contudo, a aplicação da equação adequada de um modo não 

estruturado pode consumir tempo além do previsto no processo de projeto como um todo. 

Deste modo, o estudo de dois casos geométricos de chapas sob tração na região elástica 

permitiu a comparação de FsCT obtidos de três maneiras: (a) leitura de gráfico; (b) 

equações provadas aproximadas; (c) programa de computador específico desenvolvido pelo 

autor no Microsoft Visual Basic 6.0
®

. O erro relativo entre os FsCT extraídos do programa e 

aqueles dos gráficos apresentou valores até 1.786% e 2.588% para o primeiro e segundo 

casos, respectivamente. Adicionalmente, total concordância até a terceira casa decimal foi 
conseguida entre as equações de interpolação usadas no programa e as apresentadas por 

alguns autores, o que valida o programa no domínio aplicado. 

Palavras-chaves:Fator de concentração de tensão. Programa de computador. Tração. 

Chapa. 
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1 Introduction 

 

Stress concentration factors (SCFs) are part of analysis scope of common engineering 

parts. Since SCFs are mainly due to load application and/or sudden change in geometric form 

of machine elements (particularly called Form Stress Concentration Factors, FSCFs), 

practically, these factors are frequently being evaluated to obtain the maximum actuating 

stress on each analyzed region(Pilkey et al., 2020). 

For some set of fixed geometrical and loading conditions, the FSCFs can be obtained 

experimentally (e.g., photoelasticity or strain gages), analytically (e.g., elasticity theory), or 

computationally (e.g., Finite Element Method, FEM). From specific tables and charts built 

experimentally or from their related mathematical expressions (interpolated equations), the 

correspondent FSCFs are often extracted (Muminovic et al., 2014). 

Commercial packages (e.g., Ansys
®

, Nastran
®

, Abaqus
®

, Lisa
®

, etc.) grounded on 

some of the existing numerical methods are already available for this type of calculation. 

However, in most of the cases, the access to this type of software implies investment in 

expensive licenses, which is not feasible for small private companies, universities, and some 

institutions, for example. 

In the case of extracting the factors from the referred charts as a simple process of 

manual data reading, it is known that one of the common problems faced is the parallax error. 

The reading process of the pertinent values rarely incurs in an undoubted value referred to the 

accuracy needed. This process brings a relative imprecision because of its manual (visual) 

manner of determination. 

On the other hand, even when the case allows the obtainment of the stress 

concentration factor via an approximate numericalmethod, which is the case of some 

expensive softwares already mentioned, an unorganized process can produce execution errors 

besides being time consuming in the sense of non-organized method of accomplishment. 

The more general problem of finding an alternative to the imprecision of reading 

experimental charts and to the referred expensive specific softwares has led some researchers 

to dedicate themselves to find the corresponding solutions in terms of contributions of 

developed computer programs to solve for the FSCFs (Jr.;Shahhosseini, 2002;Muminovic et 

al., 2014; Kmecz, 1972; Kannan, 2018); and computer programs simply used to compare the 

calculated factors with those obtained by other manners (Muminovic et al., 2015; Gunwant et 

al., 2016; Santos et al., 2016; Bidhar et al., 2015;Ozkan; Toktas, 2016; Pathak et al., 2018). 

In Jr.;Shahhosseini(2002), the authors developed a Windows-based computer program 

for the calculation of FSCFs for a wide variety of geometry and load cases. The software 

created inside Microsoft Visual Basic 6.0 allows the user to choose between two measurement 

systems: SystèmeInternationale (SI) and United States Customary System (USCS). Besides 

calculating the FSCFs, stresses are also obtained with the possibility of saving critical point 

configuration and latter recalling it. 

Muminovic et al. (2014) developed a Windows-based software to which another 

results from other computer programs are compared. In addition to the created software, the 

authors performed an analysis based on the literature using modules inside Microsoft Excel. 

An interpolation technique provided approximate equations to the calculation of FSCFs. 

Microsoft Visual Basic was emulated within Microsoft Visual Studio to output FSCFs, 

nominal, and maximum stresses. 

Kmecz (1972) created a computer program to obtain stresses (by means of the FSCFs) 

and deformations within axisymmetric structures of arbitrary shape. Temperature changes, 

gravity forces, and concentrated loads are input data to calculate the effects of stress or 
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displacement boundary conditions. In addition, a successive approximation technique 

included non-linear material properties. 

Kannan (2018) showed the calculation of FSCFs for axial, in-plane, and out-of-plane 

in the fatigue life of tubular joints. Computer program results were compared with the 

corresponding analytical. 

Muminovic et al. (2015) calculated the FSCFs inside a commercial package of FEM 

and compared to the results collected from the software already mentioned here, developed by 

Muminovic et al. (2014). Thus, the created program could be investigated in what concerns to 

its accuracy. 

The works of Gunwant et al. (2016) and Santos et al. (2016) have both determined the 

FSCFs by applying the FEM. The first studied flat plates with eccentric circular and elliptic 

holes under tension. In addition, they have analyzed the stress distributions around double 

semicircular notches. The second work focused on flat plates with combined discontinuities, 

comparing values obtained via equations with those from the FEM in order to validate the use 

of the FEM commercial package. 

An empirical mathematical expression for the FSCF was obtained in (Bidhar et al., 

2015) for an unequal-sized cavity pair in an arbitrary orientation. Finite Element Analyses 

(FEAs) were performed to verify the behavior of FSCFs for different orientations, sizes, and 

separation of cavities. The empirical formula is proposed to be applied as a guideline for 

selecting a casting method for car engine blocks in what refers to fatigue crack initiation. 

Ozkan and Toktas (2016) and Pathak et al. (2018) both determine the FSCF using 

different methods to compare the results obtained from different manners. The former referred 

work compares the empirical FSCF with those obtained by analytical, regression analysis, 

FEA, and artificial neural network. The latter work established FSCFs of a round bar with 

“u”-groove via: (a) FEM; (b) chart experimentally obtained (extracted from a book); and (c) 

experiment (using the universal testing machine), and compared the results. 

From the books cited (Young;Budynas, 2002; Budynas-Nisbett, 2008; and Pilkey et 

al., 2020), charts relating the FSCF with its pertinent geometrical factor were consulted for the 

cases calculated on the software presented in this paper. For several situations, there are also 

the mathematical expressions (commonly interpolated) originated from the experiments 

performed to construct these charts. 

Therefore, in this paper, a Windows-based software is proposed in place of the well-

known tables, charts, and expensive commercial packages in the context of FSCFs calculation 

of plates under tension. The referred software provides two sets of geometrical and tensile 

loading situations (cases). Complementarily, the program calculates the nominal and the 

maximum stresses for both cases. An approximate equation was obtained via interpolation (by 

Lagrange’s method) of the discrete points of the charts for each geometric type of 

discontinuity and the results for the FSCFs provided by the software were validated through 

the comparison with the approximate proven equations developed by two authors (Howland 

(1930) for the first case and Ling (1968) for the second case). This comparison showed a good 

accuracy in the range within the valid domain of equation. Additionally, a comparison 

through the relative error between the results obtained by the software and those read from 

charts presented discrepancy. 

 

2 Stress Concentration and Software Solutions 

 

This section shows the contextualization related to the stress concentration 

phenomenon and its formulation, emphasizing the difference between the two basic types of 

FSCFs. The strategy of interpolation to create an approximate equation to model the FSCF as 
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a function of the pertinent geometric factor is presented and two cases of plates under tension 

are studied. 

2.1 Stress Analysis 

 

The failure of an engineering part is commonly started at its weakest points, where 

either a damage (e.g., a micro crack) is caused by the impurity of the crystalline material or 

the magnitude of actuating stress is larger than the corresponding strength. In the process of 

development of basic elastic stress formulation (only elastic range is considered in this work), 

no stress concentration is then assumed. This is referred to the calculation of the actuating 

stresses on a prismatic bar which cross-section is far enough from the point or region of load 

application (Saint-Venant’s principle assumption). Under this scenario, the stress 

concentration phenomenon due to loading application is simply neglected. This is mainly due 

to the analysis objective, which is particularly to find the nominal stress(Pilkey et al., 2020). 

However, in engineering design, geometric discontinuities frequently exist in almost 

every component due to its functionality within the context of the corresponding assembly. 

Grooves, holes, keyways, shoulders, threads, cracks, etc. are a few examples of 

discontinuities, which address the concept of stress concentration phenomenon, quantified by 

the so-called stress concentration factor (Young;Budynas, 2002). 

Related to the accuracy of stress calculation, analytical solutions for this type of 

problem are based on the formulations of the theory of elasticity, which include assumptions 

such as the homogeneity of the material, isotropy, and defect-free. In a more reliable analysis, 

an approach considering a more realistic material model could be adopted (Budynas-Nisbett, 

2008). 

 

2.2 Stress Concentration Factors 

 

The mentioned discontinuities change stress distribution as the stress “flow” from a 

region with constant geometric characteristics through a discontinuity. Thus, when the 

comparison between stress and strength is made, it is imperative to evaluate how a geometric 

discontinuity increases the stress at this region by the stress concentration phenomenon. 

Therefore, stress concentration in elastic range means the localized stress higher than the 

nominal stress, which occurs due to a geometric discontinuity. To quantify how larger is the 

peak of stress related to its nominal, the stress concentration factor (SCF) quantity is 

introduced, which is expressed by Kt (theoretical) in Equation 1 (Young;Budynas, 2002), 

 

 �� = ������	� , (1) 

 

where ���� represents the maximum actuating normal stress in the part and ��	� is the 

nominal or mean actuating normal stress. The same concept could be applied to define the 

SCF for shear stress, but stresses of this nature are not the focus of this paper. Also, the SCF 

treated here is not due to the application of a loading system, but referred to geometric 

discontinuities, thus receiving the nomenclature of form stress concentration factor 

(FSCF).The geometric discontinuity addresses that the nominal stress can be determined in 

the following two manners: 

(a) if the gross cross-sectional area Ag (cross-section far enough from any 

discontinuities) is considered, then the nominal stress in Equation 2 holds: 
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 ��	�� = 
��  ; (2) 

  

(b) if the net cross-sectional area An (cross-section at the discontinuity studied) is now 

used, Equation 3 applies: 

 ��	�� = 
�� , (3) 

 

where P is the magnitude of the tensile loading system, ��	�� is the gross nominal stress 

applied to the solid being analyzed, and ��	�� is the net nominal stress. Therefore, the 

corresponding FSCFs, one considering the gross cross-section, and the other calculated 

assuming the net cross-section are, respectively, given by Equations 4 and 5: 

 

 ��� = ������	��  ; (4) 

   

 ��� = ������	�� . (5) 

 

In this paper, FSCFs are given by the concept of Equation 5, i.e. ��� (see Equation 6). 

Therefore, Equation 7 gives the maximum stress. They are presented by: 

 

 ���� = ��� ; (6) 

 

 ���� = �����	�� . (7) 

 

To overcome the difficulty of interpretation in the reading process of an experimental 

curve or the execution of the calculation in a non-organized manner, this paper implements an 

interpolation function via Lagrange’s method applied in the software developed. In a general 

character, the interpolating polynomial 
��� of degree n-1 with n terms through the n points 

is defined by the Lagrange’s classical formula (Equation 8): 

 

 
��� = �� − ����� − ��� ⋯ �� − �������� − ������ − ������ − ����� ��
+ �� − ����� − ��� ⋯ �� − �������� − ������ − ������ − ����� �� + ⋯
+ �� − ����� − ��� ⋯ �� − ���������� − �������� − �������� − ����� ���� , 

(8) 

 

where the n points are defined by �� = �����, �� = �����, ⋯ , ���� = �������.In this 

context, ��, ��, ⋯ , ���� are the FSCFs and x is the geometric factor. 

When the interpolation uses the number of coefficients equal to the number of 

tabulated values, the interpolation function gives the tabulated values perfectly. Therefore, to 

obtain the matrix of the coefficients  ! of the interpolated equation, Equation 9 is run. 

Adjacent to this matrix, in the left side of equation, matrix of �! is known as a Vandermonde 

matrix (geometric progression in each row and the right side of Equation 9 is represented by 

the matrix of �!. 
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⎣⎢⎢
⎢⎡ ��� ��� ��� � �����

��� ��� ��� � �����⋮����� ⋮����� ⋮����� ⋱� ⋮�������⎦⎥⎥
⎥⎤ *  � �⋮ ���

+ = * ����⋮����
+. (9) 

If the tabulated points are represented by �! ≡ ���!�, where i is the i-th tabulated 

point, the interpolating polynomial can be written by Equation 10: 

 

 
��� = �����-���� + ⋯ + �������-������ =  . ���!����
!/� -!��� , (10) 

   

where the term -!��� is given by Equation 11: 

 

 -!��� =  0 � − �1�! − �1
���

1/�,   12!  . (11) 

 

Although there are more efficient methods, Equation 9 can also be solved by standard 

techniques for linear equations. A timely observation to make is about the Vandermonde 

matrix, which will determine if the system is solvable through the non-nullity of its 

determinant. 

 

2.3Plate with Central Hole under Tension 

 

An example of such a case of transition between a constant cross-section and a 

discontinuity is a plate (strip) with a central hole. When this part is under a homogeneous 

tensile loading system applied far enough from the discontinuity, the stress distribution is 

similar to the profile shown around each side of the hole in Figure 1. 

 
 

Figure 1. Tensile stress distribution around the hole in a plate with central hole. 

Source: Pilkey et al. (2020). 

 

The width of the plate is represented by H; d is the hole diameter, P is the tensile 

loading magnitude, a is the hole radius, h is the thickness, B is the farthest point in the width 

from the center of the hole, and O is the center of the hole. The stress distribution is also 

shown for the critical cross-section as a result of application of loading P (which generates the 

stress field � in the region of application), highlighting �� (the minimum at the critical cross-
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section), and ����, which occurs at point 

stress (Equation 12) and the corresponding FSCF (Equation 1

 

 

 

Within the context of the plate with central hole, Equations 4 and 5 can be translated 

into second- and third-order

by Howland, 1930), which were proposed to be based on interpolations performed over the 

experimental data gathered.

 

 ��� = 0.284
 

 

 
��� = 2 + 0

 

In what concerns experimental values, Figure 2 shows them represented by curves 

related to the two different FSCFs, where the dashed line indicates extrapolation.

 

 

Figure 2. FSCF��� related to the geometric factor 

 

Therefore, related to

the FSCFs is obtained by the calculation 

in Equation 9. The points �
3.004); (0.100, 2.732); (0.200, 2.519); (0.300, 2.358); (0.400, 2.240); (0.500, 2.157); (0.600, 

2.102); (0.700, 2.067); (0.800

the software: 

 
��� = −3.849 ∙ 10∙ 10����+ 3.004
 

2.4Plate with Lateral Grooves Symmetrically Disposed

 

Another example often available in what concerns experimental points and commonly 

found in engineering design is the plate with opposite semicircular edge notches subjected to 

a uniform tensile loading system (see Figure 3).
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, which occurs at point A. This example addresses the follow

) and the corresponding FSCF (Equation 13): ��	�� = 
�� = 
�; − <�ℎ ; 
��� = ������	�� = �����; − <�ℎ
  . 

Within the context of the plate with central hole, Equations 4 and 5 can be translated 

order polynomials, respectively, Equations 14 and 15

, which were proposed to be based on interpolations performed over the 

experimental data gathered. 

284 + 2 >1 − <;?�� − 0.600 >1 − <;? + 1.32 >1
0.284 >1 − <;? − 0.600 >1 − <;?� + 1.32 >1

In what concerns experimental values, Figure 2 shows them represented by curves 

related to the two different FSCFs, where the dashed line indicates extrapolation.

related to the geometric factor d/H for a plate with central hole in 

tension.Source: Howland (1930). 

elated to the plate with central hole, the interpolated equation to calculate 

the calculation of the coefficients from the linear system presented ��! , �!� entered as input for Equation 9 are the following: (0.000, 

3.004); (0.100, 2.732); (0.200, 2.519); (0.300, 2.358); (0.400, 2.240); (0.500, 2.157); (0.600, 

2.102); (0.700, 2.067); (0.800, 2.043). This yields Equation 16, which is applied directly in 

10����A + 1.215 ∙ 10����C − 1.564 ∙ 10�����D − 4.011 ∙ 10����E − 1.320�F + 3.360��004 . 
Lateral Grooves Symmetrically Disposed 

Another example often available in what concerns experimental points and commonly 

found in engineering design is the plate with opposite semicircular edge notches subjected to 

a uniform tensile loading system (see Figure 3). 
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. This example addresses the following nominal 

(12) 

(13) 

Within the context of the plate with central hole, Equations 4 and 5 can be translated 

4 and 15 (both introduced 

, which were proposed to be based on interpolations performed over the 

> − <;?� ; (14) 

> − <;?F. (15) 

In what concerns experimental values, Figure 2 shows them represented by curves 

related to the two different FSCFs, where the dashed line indicates extrapolation. 

 

for a plate with central hole in 

the plate with central hole, the interpolated equation to calculate 

linear system presented 

entered as input for Equation 9 are the following: (0.000, 

3.004); (0.100, 2.732); (0.200, 2.519); (0.300, 2.358); (0.400, 2.240); (0.500, 2.157); (0.600, 

, which is applied directly in 

�G + 1.056− 3.044� (16) 

Another example often available in what concerns experimental points and commonly 

found in engineering design is the plate with opposite semicircular edge notches subjected to 
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In Figure 3, H represents the width, the magnitude of the tensile loading system is P, 

the radius of both semi-circular notches is r, and the plate thickness is h. Consequently, the 

relation ; − 2H = < holds. Thus, ��	�� is the same as obtained in Equation 5, and ��	�� is 

given by Equation 17: 

 ��	�� = 
ℎ< . (17) 

 

Therefore, Ktg is the same as Equation 7, and Ktn results in Equation 18: 

 ��� = ������	�� = ����ℎ<
  . (18) 

 

 
 

Figure 3. Strip weakened by symmetrical semi-circular notches.Source: Pilkey et al. (2020). 

 

Equation 19 presents the approximate mathematical expression that represents the 

continuity of the experimental points obtained for the FSCF (Ling,1968). Similarly to the 

Equation 15, Equation 19 was also obtained by the author performing a cubic interpolation of 

the related experimental data. 

 ��� = 3.065 − 3.472 >2H; ? + 1.009 >2H; ?� + 0.405 >2H; ?F. (19) 

 

Figure 4 shows the FSCF behavior related to the geometric parameter 2r / H for a plate 

with opposite semi-circular notches under tension. 

 
Figure 4. FSCF ��� related to the geometric factor 2r/ H of a plate with opposite semi-

circular edge in tension.Source: Ling (1968). 
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Equation 20establishes the interpolated equation for the FSCF of the plate with 

opposite semi-circular edge in tension, obtained analogously to Equation 16, which is also 

within the developed software. The points ��! , �!� entered as input for Equation 9 for this 

case are the following: (0.000, 3.065); (0.100, 2.728); (0.200, 2.414); (0.300, 2.125); (0.400, 

1.864); (0.500, 1.632); (0.600, 1.433); (0.700, 1.268); (0.800, 1.141). 

 

 
��� = 6.513 ∙ 10����A − 2.043 ∙ 10����C + 2.619 ∙ 10����G − 1.766∙ 10����D + 6.700 ∙ 10����E + 0.405�F + 1.009�� − 3.472�+ 3.065 . (20) 

 

2.5Software Solution for FSCFs 

 

The software developed and introduced here has the purpose of calculating the FSCF, 

nominal stress, and maximum stress for two types of discontinuities in plates under tension. 

Its graphical interface is shown in Figure 5. 

 

 
Figure 5. Graphical interface of the software. Source: the author (2020). 
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The computer program consists of a Microsoft Windows
®

-based software, developed 

in Microsoft Visual Studio 10.0
®

 by means of emulating the Microsoft Visual Basic 6.0
®

 

ambient.It is proposed to replace the well-known tables, charts, and expensive commercial 

packages in the calculation of the FSCFs of the cases and ranges covered. The referred 

software is capable of providing two sets of geometrical and tensile loading situations. In 

addition to the calculation of the FSCFs, the program presents the nominal and the maximum 

stresses for both cases. 

From the point of view of computer program external architecture, the software is 

composed of drop-down boxes, text-boxes, instruction lines, illustrations, result-boxes, and a 

button. With regard to its internal structure, an adequate sequence of interpolation and stress 

equations, conditional statements, definition and attribution of variables, etc. is arranged. 

The first four regions are related to the input data, which involves, respectively: (1) 

selection of the geometrical case (1 for plate with central hole under uniform tension; 2 for the 

case of plate with opposite semi-circular edge notches), (2) selection of the load case (only 

axial tension option is already available), (3) filling in the loading type field (magnitude in N), 

and (4) filling in the fields corresponding to the pertinent geometric variables (d, H, and h for 

the first case, and H, r, and h for the second case, all in mm). 

The fifth section is dedicated to simply pressing the button “calculate” in order to 

perform the calculation and the sixth section gives the following output data: FSCF, nominal 

stress (in MPa), and maximum stress (also in MPa). 

The software collects the input data typed in by the user. If one of the pertinent fields 

is not selected or is not filled in properly, an error message arise with some guidance to 

correct the missing or wrong information. If the software is fed correctly, it will provide the 

output by calculating the FSCF using Equation 16 (first case) or 20 (second case); the 

nominal stress will be calculated by Equation 3; and the maximum stress is provided by 

Equation 7. The flowchart shown in Figure 6 intends to simplify the software workflow. 

 

 
 

Figure 6.Workflow of the software. Source: the author (2020). 

 

3 Validation of the Introduced Software (Results and Discussion) 

 

This section presents the comparison of the results obtained from the developed 

software with those via chart reading and approximate equations proven for both cases 

studied. The validation is made by relating FSCFs from the software and from the equations 

mentioned. 



578 

Revista Tecnológica - Universidade Estadual de Maringá - ISSN 1517-8048 

DOI: 10.4025/revtecnol.v29i2.52653 

___________________________________________________________________________ 

 

Table 1 evidences the comparison of all FSCFs obtained for the first case of 

discontinuity: the one collected by the simple reading process of the Figure 2corresponds to 

the second column, the other calculated by the application of Howland’s equation (third 

column), and the one extracted from the software developed (forth column). The last column 

of Table 1 is the result of calculation of the relative error between values obtained via 

software and from chart reading.There is an agreement at least to the third decimal place 

between the results obtained by Howland’s equation and those from the software, which, for 

the range of geometric factor d / H presented in the table, validates the software related to the 

precision mentioned for the application of the first case. 

 

Table 1. First case: comparison between FSCFs from chart reading, from Howland’s 

equation, and from software and the relative error 

 

 
 

Source: the author (2020). 

 

 
Figure 7. First case: relative error between software output FSCFs and factors obtained via 

reading process from chart.Source: the author (2020). 
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In what concerns the difference between software output and values collected when 

reading the chart, a relative error was verified with its maximum occurring at d / H = 0.40 

(relative error of 1.786%) and its minimum at d / H = 0.15 (relative error of 0.038%). Figure 7 

presents this difference in a graphical manner. The discrepancies presented here are mainly 

due to the parallax error when one tries to extract a value of FSCF from the chart. Therefore, 

in the process of reading, the FSCF can be lower (hiding a higher real maximum stress) or 

higher (hiding a lower real maximum stress) than the value obtained via equation or software. 

The discrepancies between FSCFs from reading the chart and from the software for 

the first case are presented in Figure 8 by the two curves. 

 

 

 
 

Figure 8. First case: comparison corresponding to Table 1.Source: the author (2020). 

 

 

Analogously to Table 1, Table 2 compares all FSCFs obtained for the second case of 

discontinuity, one from chart, other from Ling’s equation (Ling, 1968), and other from the 

developed software. Besides that, the relative error between values obtained via software and 

from chart reading are presented. 

As verified for the first case, the validation of the software in the range of geometric 

factor 2r / H related to the second case could be achieved by the exact agreement until the 

third decimal place between the results obtained by Ling’s equation and those from the 

software. 

Values of FSCFs via reading and via software presented discrepancies along the range 

of geometric factor 2r / H covered. Its maximum occurred at 2r / H = 0.30 (relative error of 

2.588%) and its minimum at 2r / H = 0.75 (relative error of 0.083%). An exception occurs at 

2r / H = 0.60, in which the compared values are equal until the second decimal place.It can be 

graphically checked in Figure 9. Similarly to the analysis made for the first case, this variation 

is predominantly explained by the parallax error in the extraction of FSCFs from the chart, 

presenting the same consequences as already described in the first case. 
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Table 2. Second case: comparison between FSCF from chart reading, from Ling’s equation, 

and from software and the relative error 

 

 
Source: the author (2020). 

 

 
 

Figure 9. Second case: relative error between software output FSCFs and factors obtained via 

reading process.Source: the author (2020). 

 

Figure 10 presents the described behavior related to the second case of discontinuity. 
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Figure 10. Second case: comparison corresponding to Table 2.Source: the author (2020). 

 

In a general point of view, the results presented in Figures 8 and 10 present their 

corresponding critical regions, in which the discrepancy between data collected from chart 

and extracted from software are measured by the vertical distance between the curves. 

 

4Conclusions 

 

This paper presented the results of FSCFs for two geometrical cases of plates under 

tension in the elastic range. In addition, the program provided the user with the nominal and 

maximum stresses for both cases. Results provided by the software were validated through the 

comparison with the approximate equations from another authors and compared with the 

conventional reading process from charts. 

For both cases covered by the software presented herein the interpolated equations 

used to model the curves resulted in good fit of data as proved by the comparison with 

another approximate equations, being able to be applied in the place of these proven 

equations. 

For the first case of discontinuity calculated (with central hole), in general, the relative 

error presents lower magnitudes compared with the second case. This may be due to the fact 

that the second case presents a higher variation of the angular coefficient of the curve 

derivative (see Figures 2 and 4). This predisposes the second case to be more susceptible to 

higher errors in the process of reading the FSCFs. 

Therefore, mainly due to the parallax error, the process of reading the FSCF directly 

from the adequate chart is not as accurate as obtaining it from an equation or from a validated 

software. Although it was not part of the scope of this software, the calculation of 

approximate equations of many situations of stress concentration phenomenon can be time 

consuming if it is not conducted through an organized manner, as the software proposes. 
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