EVALUATION OF SOYBEAN FLOURS OBTAINED FROM WHOLE AND SHELLED GRAINS SUBJECTED TO HEAT TREATMENT
Resumo
This study aimed to obtain and characterize soy flours from whole (WG) and shelled grains (SG) of the conventional cultivar Vmax and special cultivars used for human consumption, BRS 267 and BRS 257. For lipoxygenase enzyme inactivation, the WGs and SGs of BRS 267 and Vmax were bleached at 98 °C for 5 min, roasted at 150 °C for 30 min, milled and finally sieved through a size 40 mesh to obtain the flours. These flours were analyzed for proteins, lipids, isoflavones, Kunitz trypsin inhibitor, their nitrogen solubility index and their protein dispersibility index. The grain heat treatments caused a reduction in protein solubility, an increase in aglycone isoflavones and an 80% reduction in levels of the Kunitz trypsin inhibitor. Flours from bleached WGs were brown in color. Flours from BRS 267 had higher protein levels, while those from the cultivar Vmax had the highest lipid content. Flours from BRS 257 had greater protein solubility. Thus, varieties of special soybeans, genetically enhanced for human consumption, can be processed for better quality soy foods, promoting their acceptance.
Downloads
Referências
AOAC. (2011). Standard Format and Guidance for AOAC Standard Method Performance Requirement (SMPR) Documents. Association of Official Analytical Chemists International.
AOAC (Association of Official Analytical Chemists). (2005). Association of Official Analytical Chemists (AOAC). In Official Methods of Analysis. https://doi.org/10.1371/journal.pone.0092941
American Oil Chemists’ Society. Official and tentative methods of the American Oil Chemists Society, Pub. L. No. método oficial Ba 11-65 (1969).
Official and tentative methods of the American Oil Chemists Society - método oficial Ba 10-65. 3. ed., (1980).
Avilés-Gaxiola, S., Chuck-Hernández, C., & Serna Saldívar, S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: A Review. Journal of Food Science, 83(1), 17–29. https://doi.org/10.1111/1750-3841.13985
Baiano, A., Lamacchia, C., Fares, C., Terracone, C., & Notte, E. (2011). Cooking behaviour and acceptability of composite pasta made of semolina and toasted or partially defatted soy flour. Food Science and Technology, 44, 1226–1232. https://doi.org/10.1016/j.lwt.2010.11.029
Berhow, M. A. (2002). Modern Analytical Techniques for Flavonoid Determination. In B. S. Buslig & J. A. Manthey (Eds.), Flavonoids in Cell Function (pp. 61–76). Springer US. https://doi.org/10.1007/978-1-4757-5235-9_6
Brune, M. F. S. S., Pinto, M. de O., Peluzio, M. do C. G., Moreira, M. A., & Barros, E. G. (2009). Avaliação bioquímico-nutricional de uma linhagem de soja livre do inibidor de tripsina Kunitz e de lectinas. Food Science and Technology, 30(3), 657–663. https://doi.org/http://dx.doi.org/10.1590/S0101-20612010000300014
Cantelli, Graboski, A. M., Rigo, A., Colet, R., Steffens, J., Carrão-Panizzi, M.C. Steffens, C., & Zeni, J. (2020). Physico-chemical, microbiological characterization and sensory analysis of canned soybean sprouts. Brazilian Journal of Development, 6(8), 58928–58940. https://doi.org/DOI:10.34117/bjdv6n8-343
Cantelli, K. C., Schmitd, J. T., Oliveira, M. A. de, Steffens, J., Steffens, C., Leite, R. S., & Carrão-Panizzi, M. C. (2017). Soybean genetic lines sprouts: evaluation of physicochemical properties. Brazilian Journal of Food Technology, 20. https://doi.org/10.1590/1981-6723.7416
Cardoso, L., Oliveira, M., Mendes, F., Ribeiro, F., Santana, R., & Pires, C. (2008). Atividade de inibidores de proteases em linhagens de soja geneticamente melhoradas. Alimentos e Nutrição, 18.
Carrão-Panizzi, M., Berhow, M., Mandarino, J., & Neves De Oliveira, M. (2009). Environmental and genetic variation of isoflavone content of soybean seeds grown in Brazil. Pesquisa Agropecuária Brasileira, 44, 1444–1451. https://doi.org/10.1590/S0100-204X2009001100011
Chatterjee, C., Gleddie, S., & Xiao, C.-W. (2018). Soybean bioactive peptides and their functional properties. Nutrients, 10(9), 1211. https://doi.org/10.3390/nu10091211
Ciabotti, S., Barcellos, M. de F. P., Mandarino, J. M. G., & Tarone, A. G. (2006). Chemical and biochemical evaluation of grains, soymilk and tofus of normal soybean and Lipoxygenase-free soybeans. Ciência e Agrotecnologia, 30(5), 920–929. https://doi.org/10.1590/S1413-70542006000500015
Coward, L., Johnson, M., Kirk, M., & Barnes, S. (1999). Chemical Modification of isoflavones in soyfoods during cooking and processing. The American Journal of Clinical Nutrition, 68, 1486S-1491S. https://doi.org/10.1093/ajcn/68.6.1486S
Dahmer, A. M., Rigo, A. A., Steffens, J., Steffens, C., & Carrão‐Panizzi, M. C. (2018). Thermal treatment for soybean flour processing with high‐quality color and reduced Kunitz trypsin inhibitor. Journal of Food Process Engineering, 41(8), e12925. https://doi.org/10.1111/jfpe.12925
Dahmer, A. M., Rigo, A. A., Valduga, E., Steffens, J., Steffens, C., & Carrão-Panizzi, M. C. (2020). Quality characteristics of rotative-type biscuits free of gluten prepared with soya flour and cassava starch. Current Nutrition & Food Science, 16(2), 176–184. https://doi.org/10.2174/1573401314666181107100912
Dantas, M. I. de S., Silva, M. G. da, Pinto, C. R. R., Pereira, C. A. dos S., Minim, V. P. R., & Bittencourt, M. C. B. (2010). Soy Flours without lipoxygenase improve sensory value in cakes. Revista Ceres, 57(2), 141–144. https://doi.org/10.1590/S0034-737X2010000200001
Durango, D., Murillo, J., Echeverri, F., Escobar, G., & Quiñones, W. (2018). Isoflavonoid composition and biological activity of extracts from soybean seedlings treated by different elicitors. Anais Da Academia Brasileira de Ciências, 90(2 suppl 1), 1955–1971. https://doi.org/10.1590/0001-3765201820170785
Felix, M., Canniatti-Brazaca, S., & Machado, F. (2011). Sensorial analysis of soybean grains (Glycine max (L.) Merril) roasted by different treatments. Ciência e Tecnologia de Alimentos, 31, 56–64. https://doi.org/10.1590/S0101-20612011000100007
Ferreira, M., Neves De Oliveira, M., Mandarino, J., Da Silva, J., Ida, E., & Carrão-Panizzi, M. (2011). Changes in the isoflavone profile and in the chemical composition of tempeh during processing and refrigeration. Pesquisa Agropecuária Brasileira, 46, 1555–1561. https://doi.org/10.1590/S0100-204X2011001100018
Freiria, G. H., Lima, W. F., Leite, R. S., Mandarino, J. M. G., Silva, J. B. da, & Prete, C. E. C. (2016). Productivity and Chemical composition of food type soybean in different sowing dates. Acta Scientiarum. Agronomy, 38(3), 371. https://doi.org/10.4025/actasciagron.v38i3.28632
Hamerstrand, G. E., Black, L. T., & Glover, J. D. (1981). Trypsin inhibitors in soy products: modification of the standard analytical procedure. Cereal Chemistry, 51, 42–45.
Huang, L., & Xu, Y. (2018). Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing. Journal of Food Processing and Preservation, 42(11), e13775. https://doi.org/10.1111/jfpp.13775
IAL. (2008). Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. In Métodos físicos-quimicos para análise de Alimentos. https://doi.org/10.1017/CBO9781107415324.004
Kakade, M. L., Rackis, J. J., McGhee, J. E., & Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chemistry, 51(3), 376.
Kim, I.-S. (2021). Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants, 10(7). https://doi.org/10.3390/antiox10071064
Losado, V. A. M., Cantelli, K. C., Steffens, J., Steffens, C., & Carrão-Panizzi, M. C. (2018). Improvement in soybean sprouts production with ultrasound power. Boletim Centro de Pesquisa de Processamento de Alimentos, 35(2), 1–9. https://doi.org/10.5380/bceppa.v35i2.60274
Mohajan, S., Orchy, T. N., & Farzana, T. (2018). Effect of incorporation of soy flour on functional, nutritional, and sensory properties of mushroom-moringa-supplemented healthy soup. Food Science & Nutrition, 6(3), 549–556. https://doi.org/10.1002/fsn3.594
Nogueira-de-Almeida, C. A., Ferraz, I. S., Ued, F. da V., Almeida, A. C. F., & Ciampo, L. A. Del. (2020). Impact of soy consumption on human health: integrative review. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.12919
Rigo, A. A., Dahmer, A. M., Steffens, C., Steffens, J., & Carrão-Panizzi, M. C. (2015). Characterization of soybean cultivars genetically improved for human consumption. ETP International Journal of Food Engineering, 1(1), 1–7. https://doi.org/10.18178/ijfe.1.1.1-7
Scherer, G. C. R. da S., Ambrósio, N., Fernandes, I. A., Steffens, C., Valduga, E., Carrão-Panizzi, M. C., Zeni, J., & Steffens, J. (2021). Maximization of maceration step of obtaining water-soluble soy extract process. Brazilian Journal of Development, 7(3), 28197–28215. https://doi.org/10.34117/bjdv7n3-507
Shin, D.-J., Kim, W., & Kim, Y. (2013). Physicochemical and sensory properties of soy bread made with germinated, steamed, and roasted soy flour. Food Chemistry, 141, 517–523. https://doi.org/10.1016/j.foodchem.2013.03.005
Silva, Carrão-Panizzi, M. C., Mandarino, J. M. G., Leite, R. S., & Mônaco, A. P. . (2012). Isoflavone contents of whole soybeans and their components, obtained from different cultivars (Glycine max (L.) Merrill). Brazilian Journal of Food Technology, 15(2), 150–156. https://doi.org/10.1590/S1981-67232012005000008
Silva, C. O. da, Andrade, G. F., Dantas, M. I. de S., Costa, N. M. B., Peluzio, M. do C. G., Fontes, E. A. F., & Martino, H. S. D. (2010). Influence of processing on the protein quality of new soybean cultivars intended for human food. Revista de Nutrição, 23(3), 389–397. https://doi.org/10.1590/S1415-52732010000300007
Vagadia, B., Vanga, S., Singh, A., Gariepy, Y., & Raghavan, V. (2018). Comparison of conventional and microwave treatment on soymilk for inactivation of Trypsin Inhibitors and In Vitro protein digestibility. Foods, 7(1), 6. https://doi.org/10.3390/foods7010006
Os autores podem manter os direitos autorais pelo seu trabalho, mas repassam direitos de primeira publicação à revista. A revista poderá usar o trabalho para fins não-comerciais, incluindo direito de enviar o trabalho em bases de dados de Acesso Livre.