Revista UNIMAR 19(4):937-953, 1997.

AN OBJECT-ORIENTED METHOD FOR DESIGNING
SHARABLE DATA SCHEMAS IN SOFTWARE
ENGINEERING ENVIRONMENTS

Itana M. S. Gimenes*, Cristina D. Aguiar Ciferri*,
Edicezar L. Nanni * and Selma B. Sabigo *

ABSTRACT. The integration of CASE tools in software enginegri
environments requires a set of integration mechamito allow data sharing,
communication and process conformance. Solutionghfosharing and dynamic
management of data schemas in these environmemsprise specific
repositories, such as PCTE, and object-orientedbdae management systems
(OODBMS). This paper presents an extension witlecbpriented concepts to
Brémeau’s method for designing sharable data schel#e extension applies
both to PCTE and OODBMS. An application of the megd method is shown
through a case study which presents and integifates CASE tools.

Key words: data integration, data schema, software engimgenvironments.

UM METODO ORIENTADO A OBJETOS PARA PROJETAR
ESQUEMAS COMPARTILHAVEIS DE DADOS EM
AMBIENTES DE ENGENHARIA DE SOFTWARE

RESUMO. A integracao de ferramentas CASE em ambientes denbaria de
software requer um conjunto de mecanismos de integracao paumitam
compartilhamento de dados, comunicacgéo e unifoaeidie processos. Solucdes
para o compartilhamento e o gerenciamento dinam&esquemas de dados
nesses ambientes envolvem repositérios especif@iss;omo PCTE, e sistemas
gerenciadores de banco de dados orientados a sl§{e@DBMS). Este artigo
apresenta uma extensdo que introduz conceitos idatapdo a objetos ao
método de Brémeau para projetar esquemas de damopadilhaveis. A
extensdo proposta se aplica tanto ao PCTE quast®@@®BMS. Uma aplicacédo

Departamento de Informatica, Universidade Estadual de Maringa, Av. Colombo, 5790,
Campus Universitario, 87020-900, Maringa-Parand, Brasil. E-mail: itana@din.uem.br

Instituto de Computagéo, Universidade Estadual de Campinas, Campinas-S&o Paulo,
Brasil.

Correspondéncia para Itana M. S. Gimenes
Data de recebimento: 08/08/97.
Data de aceite: 28/11/97.

0

938 Gimeneset al.

do método proposto é descrita por meio de um edledcaso que apresenta e
integra trés ferramentas CASE.

Palavras-chave integracdo de dados, esquemas de dados, ansh@mtengenharia de
software

INTRODUCTION

The CASE technology is based on products which help the
developers in some areas of the software proceds &g organisation
and documentation of the process, analysis andydexdi the software
and configuration and version management. In génene CASE tool
does not cover all phases of the software proddss.leads developers
and managers to use several tools in the samecprdjeese tools are
produced by different suppliers which follow neittstandard means of
communication nor standard data formats. Thuseptajevelopers and
managers have been facing the difficult problem sefecting and
administrating a completely independent and diveedef tools.

Several studies have been made to define mecharnvgmsh
facilitate the integration of CASE tools (Schefatrdl993; Browret al,
1994). Integration models presented in Wasserm@80)land Thomas
and Nejmeh (1992) distinguished, at least, thrdependent dimensions
through which integration issues can be examineda,dcontrol and
presentation. Data integration aims at defining lmesms to
dynamically administrate sharable data schemas paper focuses on
data integration.

In addition to support mechanisms, data integratiequires a
systematic design of tool schemas. It is necegsaigentify clusters of
types with common features such as: versions,lgyaland permissions
and access control. It is also important to max@énie reuse of existing
types by trying to define a uniform semantics fbe ttypes used by
several tools. Thus, a conventional data modellingthod is not
sufficient to model the data of CASE tools whick artegrated into open
Software Engineering Environments (SEE).

This paper presents an object-oriented methoddsigding sharable
data schemas for open SEE repositories. In paaticiilfocuses on SEE
based on Portable Common Tool Environment (PCTH) @bject-
Oriented Database Management Systems (OODBMS) pfhication of

! Computer Aided Software Engineering.

Designing sharable data schemas 939

the proposed method is shown through a case sthéshvpresents and
integrates three CASE tools.

Section 2 presents PCTE and OODBMS as potentiab dat
repositories for SEE. Section 3 describes the mepanethod as an
extension of Brémeau’s method while section 4 prissthe case study.
Section 5 summarizes most relevant related worls famally, section 6
presents the conclusions.

DATA REPOSITORIES FOR SEE

Several approaches for data repository have beesiaped for SEE.
The first generation of them was based on EntitiafRenship-Attribute
(ERA) or relational modelling extensions. More nettg specialized
object bases, such as PCTE, and commercial OODBE\M® Hbeen
consolidated as potential options for SEE. Thistisecdiscusses the
features of PCTE and OODBMS for SEE.

PCTE

PCTE (ISO/IEC 13719) (Wakeman and Jowett, 1993) sandard
which defines a public tool interface to serve asebfor the construction
of open SEE. PCTE uses an ERA enriched with sevfeatlures of
integration and security which make the modelling data schema
special.

PCTE represents data, attributes and links as tshjefc specific
types. These objects are represented, in the oliase, either as
individual types or as collections of related typdsch are called SDS
(Schema Definition Set). Each SDS represents pattieowhole model
of a tool or an activity. A SDS is a composite abjef which the
components are calleiype_in_SDSSDSs are used to define specific
sets of the data manipulated by the tool into thieat base. When new
types are defined in PCTE, they can be integraiéu tive existing SDSs
into the object base. PCTE already offers pre-eefiSDSs, such as:
system, metasds, security and accounting. The glesgucture of tool
integration into PCTE is illustrated in Figure 1.shows a SDS for a
Requirement Analysis Tool integrated with a SD& @oding Tool.

PCTE provides a specific view for each tool throubh working
schemamechanism. Each working schema represents ayartidomain
or view, such as the role of a user (e.g. progranonenanager) or the

940 Gimeneset al.

view of a tool or activity (e.g. requirement elaibn or coding). In
PCTE, every process has its associated workingnszhevhich enable
them to access their instances. Thus, it is thrahgise schemas that
executable tools recognise the representationedf tkata models.

Requirements .. Coding Tool
Analysis Tool

Communication between
Tools and PCTE

@D

| 4 Existing Types into
Diagram_type Person_type Source_code_type PCTE Repository

Figure 1. Tool integration in PCTE.

A working schema is a well formed union of typesacdequence of
SDSs. This gives origin to a set tfpe_in_working_schema&CTE
provides built-in well defined rules to integrateperties of the defined
type into the SDS sequence that composes the vgpdéhema. These
rules and operations form the mechanisms for dymasthema
management that enable the insertion of toolsaptn SEE. In addition,
they provide a strong basis for reusing the typesaey defined in the
environment base.

In addition to the data management services, PA$& provides
services for process control, definition of acogsmips, tool enveloping
(for external tools) and tool communication viaification.

Although it has become an international standadJE did not
achieve the expected commercial success. Few caesphaave built
environments or frameworks based on this standasdan{ord
Management Group, 1995; EDS, 1994).

OODBMS

One of the reasons for PCTE difficulties is theaflat improvement
of OODBMS which start to offer a competitive setsefvices for SEE.

The main advantages of using OODBMS are that thepmpass all
the advantages of the object-oriented approacts gives flexibility to

Designing sharable data schemas 941

define both the characteristics and the behavidumlgects. More
modern OODBMS implement mechanisms such as triggetgications
and invocations, that can be used to verify ruled eonstraints over
classes. Special libraries for software engineecig be acquired from
the market which can form an appropriate layer @&DBMS. These
library services can be extended by adding newsekswith more
specific characteristics and behaviours. Thus, mudern and efficient
tools, already designed for an object-oriented &aork can take
advantage of these services to achieve better rpeafce. However,
OODBMS do not usually provide services for dynamefinition and
manipulation of schemas. They do not usually supita definition of
set of types that a tool can view or access, sa¢cheSDSs and working
schemas of PCTE. Another shortcoming is the lackuilt-in rules for
schema integration. Thus, the use of OODBMS adbé#se of open SEE
requires the implementation of a layer to suppp#dcsgic services, as
mentioned above.

Therefore, it is not straightforward to decide be best alternative
for data integration. When using OODBMS, additiowalk is needed to
support particular SEE facilities based on simpletadabstraction
services. On the other hand, PCTE restricts the &&Elopment to a
specific architectural mode.

AN OBJECT-ORIENTED METHOD FOR DESIGNING
SHARABLE DATA SCHEMAS

This section describes an extension with obje@rded concepts to
Brémeau’s method (Brémeau and Thomas, 1993, 188@ekigning and
integrating sharable data schemas. This extensiakesnthe design
easier both for PCTE and OODBMS. Section 3.1 pitss@summary of
Brémeau’s method, pointing out its shortcomingscti®a 3.2 presents
the proposed extensions.

Brémeau’s Method

This method has four main activities or phasesceptual design,
logical design, definition of SDSs, review and galion (see Figure 2).

The conceptual desigriakes as input data and operation concepts
plus software process assumptions and performsconeeptual data
modelling of the tool. It offers as output ERA ghbbschemas and

942 Gimeneset al.

instance diagrams. This phase is decomposed imne Bteps:
define/refine Data Flow Diagram (DFD), define/refidata models,
integrate data models, create instance diagrantsceeate subset and
usage schemas. This phase is completely PCTE-indepe ERA
models may even include some n-ary relationshipsiwéire not defined
by the PCTE OM35 Some of the relevant aspects analyzed in thisggha
regarding tool integration, are:

- the groups of users (and their respective rolgsrh perform
operations on data stores as this is importanetmel the access
to data from the tools;

- the effect of operations over related data stareorder to define
data clusters of the tools.

The logical design takes as input the ERA globdiestas and
instance diagrams, produced in the conceptual degplis existing
groups, types, SDSs and tools in the SEE. It offsr®utput annotated
global schemas and instance diagrams with clustBngss phase is
decomposed into four steps: identify clusters,neefglobal schemas,
revise instance diagrams and annotate global schehmas part of the
method represents the transition to the PCTE-spesthema design. It
takes the instance diagrams and draws cluster lowsdon them,
corresponding to the cluster criteria of: versignistability, concurrence
and discretionary and mandatory access permissions.

The definition of SDSdakes as input the set of ERA subset and
usage schemas, produced in the conceptual designapnotated global
schemas and instance diagrams with clusters prdducehe logical
design. It delivers as output a list of SDSs. Itdécomposed into three
steps: select PCTE-type properties, evaluate clgst@antic support and
allocate PCTE global schemas to SDSs. This phagdoiex the
annotated schemas to make final decisions on tbheelof appropriate
PCTE types and links.

The review and validation takes as input: a lis6BfSs, produced in
the definition of SDSs; the DFD processes, opematiand groups,
produced in the conceptual design; and the indgration concepts.
The output is the validated list of SDSs. It is @®posed into three
steps: analyse performance, check design robustnesgalidate SDSs.

2 Object Management Systems.

Designing sharable data schemas 943

In addition, there are feedbacks between the phas®sler to obtain
a more precise and integrated modelling. A compbscription of
Brémeau’s method can be found in (Brémeau and Thoh®96).

A shortcoming of Brémeau’s method is that it is wmecific for
PCTE. In addition, it is not based on an objecétied design method.

The Proposed Method

The objective of the proposed method is to incafrobject-
oriented concepts in order to make the mappinghef tbol's data
schemas both onto PCTE and OODBMS easier, thusdasimgy data,
behavioural and functional aspects. The main diffee between the
proposed and Brémeau’s method is related to theegminal design
phase. In this phase Brémeau’s method is base8atini et al, 1992)
whereas our method is based on OMT (Rumbaeighl, 1991). The
differences between the methods are illustratdeigare 2. In this figure
normal fonts represent information of both methattjc fonts apply
only for Brémeau’s method; and bold fonts belongthe proposed
method.

In the following sections the extensions propose@dch phase of
Brémeau’s method are presented.

software process assumptions data model feedback

data # models feedback
concepts Perform DFD processes, operations, groups
2222&::2 Conceptual object, dynamic
DESign and funcional

models
ERA global |

schemas ¥ annotated
+ instance Perform | opject
diagrams Logical models
Design annotated
global
schemas +
instance

performance feedback

behavioural
and functional
concepts

existing
groups,
types,

SDSs, set of ERA diagrams
tools subset & with
usage clusters -
schemas Define
SDSs

A

Review ,
and validated

. list of
Validate |gpss

list of SDSs

Figure 2. Overview of Brémeau’s and proposed method.

944 Gimeneset al.

Conceptual Design

This phase consists of modelling the tools usingTOM takes as
input data, behavioural and functional concepttheftool plus software
process assumptions and produces the object, dgnamadi functional
models.

The object model represents the static and stralcaspects of the
tool's sharable data. This modelling should idgntifasses of objects,
associations and aggregations between object$olilé also consider
the object attributes and their relationships. tithece should be used to
organize and simplify class structuring.

The dynamic model represents the temporal and miraV aspects
of the tool, mainly the sequence of interactionsvieen operations. This
model requires the definition of scenarios, andcglpand exceptional
sessions in which the tool operates. This modelbhguld: identify
external events between the tool and the exteroaldydesign a state
diagram for each active object, emphasising bothetirent patterns that
it receives and sends, and the actions it execargs;compare events
between state diagrams. The final dynamic modebisposed of the set
of individual state diagrams.

The functional model represents the tool's openatio not
considering when or how. In this modelling, a DROJesigned based on
the identification of the input and output valuéshe tool services.

This phase offers the basis for mapping the mogigher to PCTE or
to OODBMS in the following steps of the method. FeEimplicity,
hereafter, we refer to PCTE or OODBMS as objecebas

The following phases of the proposed method arg saémilar to
Brémeau’s method. One of the differences is thaniau's method
constructs instance diagrams in the conceptuabdgsnase, based on
DFDs, whereas the proposed method derives theggadia from the
logical design, based on the object and dynamicetsodNote that we
assume that an equivalent concept of SDSs and mgpekihemas will be
applied to OODBMS.

Logical Design

This phase consists of the mapping of the OMT n®deito the
schemas of the object base. It takes as input pbgymamic and
functional models and delivers as output annotatgi¢ct models and
instance diagrams with clusters. Three main step#aolved: design of

Designing sharable data schemas 945

instance diagrams, identification of clusters andaation of the object
model. In addition, refinements of the OMT modelsynake place. The
instance diagrams are designed based on the @lrjdadynamic models.
They describe the behaviour of specific sets oédisj before and after
each operation. These diagrams are drawn to andfyséoundaries
between related objects and makes group those wiadicipate with
the same operations into clusters.

The annotation step makes the initial mapping efassociations and
attributes of the object model onto the particylaoperties of the object
base. This mapping takes into consideration thedpfimed types of the
object base. For instance, PCTE attributes candpgped onto: boolean,
float, integers, natural, string, time, enumeratiorcontents. New types
are only created if an equivalent type is not alyedefined. In PCTE,
associations can be mapped to properties such @sipasition,
existence, referential integrity and relevancehtodrigin.

Definition of SDSs

This step produces a list of SDSs from the anndtatgect model
and the instance diagrams with clusters. Threeviies are involved:
select the final type properties of the object basaluate the selected
properties and produce the list of SDSs.

The first activity consists of taking decisionsdomplete the initial
mapping of the object model developed in the previphase. For
instance, in PCTE, if an association is annotatednat having the
composition property but the referential integritthe choices of
association types are restricted to existenceraebée or implicit. There
might be cases in which the annotations do not tea straightforward
mapping onto the object base and feedback to teeiqus step is
necessary to adjust the models.

The evaluation step checks whether the selecteestgb objects,
associations and attributes conform with the resmeénts of the logical
design. For instance, it verifies whether the aséon properties are
appropriate to support the defined clusters.

The list of SDSs should take into account thatdbBned schemas
may be reused by further tools integrated intoetindronment.

946 Gimeneset al.

Revision and Validation

This phase is very similar to the equivalent oneBirémeau’s
method. Thus, it analyzes the performance and tobss of the
proposed list of SDSs.

A CASE STUDY USING THE PROPOSEDMETHOD

This section presents an experiment related tdfitkestep of the
proposed method. It consists of modelling three EA®ols and
developing their integrated models. It aims at poddg integrated
models which are more concise and increase databahdvioural
sharing. The models were designed at a high levdy, considering the
main characteristics and most basic operationhetdols. Although we
have developed the three OMT models in this exptdue to space
limitations, here we present only the object andaalyic models.

The tools used in the experiment are: a versionagament, a
project management and a bug tracking. This exangplan object-
oriented version of the model described in (Brawal., 1994), using the
ERA model. Figures 3 to 5 show the individual objemdels of these
tools while Figure 6 presents the integrated objemdel.

‘ creates L
person document version tool
name | _responsible__jname L has—eY-_NO 'Hproducedi name
dept for date date by vendor
status comment date
Figure 3. The object model for the version management tool.
manager project product unfixed bugs
name 7assigned4bname 7producesﬂbname 7hasapname
grade date status status
budget deadline date

Figure 4. The object model for the project management tool.

The integrated object model was drawn by identifyiand
solving conflicts amongst similar and different repentations of
related data of the tools. For instanperson (Figure 3),manager

Designing sharable data schemas 947

(Figure 4) anddeveloper(Figure 5) were integrated into thperson
class (Figure 6). Similar correspondences wererdegbed between
classes and associations. This can be observeldeimntegration of
the associationsesponsible for(Figure 3) andassigned(Figure 4).
Another kind of integration was obtained by genigray the objects
project, design program and moduleto the superclasslocument
This generalization was based on the fact thabtijects of both the
project management and the bug tracking tool ase a&krsionable.
The attribute status was not previously part of all the object
subclasses but it was maintainedhedocumenfor semantic reason.

i i tracked t i
y—lmplemented byi é—lncludesjfrace oj ras&gnedtoﬁ

design program module bug report developer
name name name date name
date date date status grade
size severity

yiproduced by‘l lihas*‘ l—responsiblefor“ ’—assigned tOj

[hasfreported%

Figure 5. The object model for the bug tracking tool.

tool version document person bugs
name VvV_ho name name name
vendor date date dept severity
date comment status grade date
/\ status
’
‘ [tracked to
product project program l
name budget size -
status design module
deadline

T—produceSQ \—developed byJ Limplemented by—T T—includes—T

Figure 6. The integrated object model for the tools.

Some associations present in the individual models eliminated
from the integrated model as they became redun@agt createsin
Figure 3). On the other hand, additional semangssoeiations were
included (e.gdeveloped byn Figure 4).

948

Gimeneset al.

The dynamic models for each tool are presenteddgares 7 to 9
while the integrated model is shown in Figure 18eTintegration of
the dynamic models aimed at maintaining the egemwabperations
amongst the tools in order to increase behaviouarish. The
integrated dynamic model was developed respectiegintegrated
object model. For instance, based on the integnatibperson the
operations of the corresponding objects were amtegrated. As in
the integrated object model the objects relateddéocumentwere
generalized, the correspondent operations in timagyc model were
integrated and assigned to this superclass. Furdéfearements may
be necessary to customize the operations of thelasges.

registered pers

registered person d.

[person data] [document name] [tool data]

start,
™ do: entry
o . |—optio do: verify required option
required optio Pl fy req p
" " . . £
[option=register persol [L[optlon:reglster 3
0T
T =
o5
. o g
: g5
n Q
28
T
o
I}
2
j=
o

do: verify
person data

not registered person

do: register
person

option=register tool]

do: entry tool
data

[other options;] document]

[document data]

[registered tool datat

do: verify
document data

: do: verify do: verify
document name tool data

registered document not registered tool

do: execute do: register
required optio tool

locument

d

not registered document

do: register
document

“not registered

registered toot———

[option= [option=
.- do: entry generate edit do: seek s
version numbey or edit document document versions
version] history]

Figure 7. The dynamic model for the version management tool.

The integrated models obtained are concise and,cteal they
avoid data and operation redundancies that coutdirod the tools

worked

isolated. We can observe that further refieets are

necessary to achieve completeness. In real expmEserthis needs to
be done taking into account the data and operatguirements of
the specific environment and tools being modelled.

Designing sharable data schemas 949

do: verify required option

[option=register
project]

[option=list manager projects}

reqistered project———

= options]

c
sg do: entry do: entry do: entry do: entry
5§ \ manager data project name manager nameg project data
€ @ [manager data] [project name] [manager name] roject data]
E g [proj J
Q
5] . .
z do: verify do: verify
2 manager data manager namg

registered project registered manager not registered project

listed projects

not registered manager

do: register
manager

do: register
project

do: execute
required optio

do: verify
manager projects

“—not registered proje

not registered manager——
[projects]

T

s do: entry [r‘;';‘l's"t';fi [r‘;g’lgfe‘j do: entry - do: list
bug data bug] product] product data v projects

« - - - — -

do: verify required option

L[optlon:reglster
[other options! design]

[option=register develope

reqistered design————

Q
o
S o
£3 do: entry do: entry do: entry do: entry
“é@ developer data design name program name design data
3)
3 i',’ [developer data] [design name] 2 [program name] [design data]
3 §
2 do: verify do: verify g do: verify do: verify
B developer data design name,/ 3 program name design data
i
g
not registered developer registered design '%_ registered program not registered design
S

do: verify
program bugs

do: execute do: register

design

do: register
developer

“—not registered design

listed program bugs

not registered program——

[program bugs]

« - - — -

do: entry [option= [option= do: entry do: list
<« — register register- - =
program data program] bug] bug data v program bugs

Figure 9. The dynamic model for the bug tracking tool.

950 Gimeneset al.
start l
;\AXV Y i v]
c
—» do: entry) do: verify required 2
. __|—option A . 2
option do: entry g
- L person name,/ g
[option= . . I [option=list 2
: [option=register [option= 4]
register person] document] register tool] person [person name] 8 —
c projects] -)
2 gl |8
= ggx do: entry do: entry do: entry tool do: verify 3
§ § < person data document data data person name 3
3 I 3 [person data] [document data] @ [tool data] registered person) ;',’
S| o 5 5| =
° 12 = =]
S|a . . =3 . . o
sz do: verify do: verify g do: verify do: verify 2
- j=2 A
29 persondata/ . \ documentdatad % tool data person projects
o I = 5
= £ | [2
not registered person § not registered document not registered tool [projects] o
: 3)))
= do: register b5 do: register do: register do: list =
§ person ﬂ%; document tool projects -
g ; |
g registered document
Q
7] .
= do: entry do: verify do: execute do: entry .
5 document name document name required optiory ¥ bug data
L) -
[document name] _/_ [option=register [option reglsterJ
[option=edit duct bug]
“» [option=generate ou edit version] document product]
2 do: seek history]
< do: entry y ¥ do: entry e
g version numbe document roduct data option=list
g v versions P program bugs
5
3 [program registered [program
ko) v bugs] name]

do: list
program bugs

program
do: verify
program bugs

do: verify
program name/

do: entry
program name

not registered program

Figure 10.The integrated dynamic model for the tools.

RELATED WORK

Ideas of data integration were introduced sinceAitie Programming
Environment, which proposed a central repositorstate the data shared
by its services (Munckt al, 1989). One of the major works in this area
is PCTE (Wakeman and Jowett, 1993). This standathbbshes
advanced services to design and integrate thestgsoliemas. There are
commercial implementations of this standard (Transti995; EDS,
1994) and several environments were based on iik¢lSteinet al,
1994). A more recent work by Transtar (Transta®6)%rings about a
NIM (Neutral Information Model) which provides a taemodel to allow

Designing sharable data schemas 951

the mapping of tools to a unified basis. (Reis96)uses a simplified
form of data integration, called fragment integyafi(logical unit) which
involves creating a simple database by identifyiogical portions of
files and storing references to these portions ad was additional
information to define links and store associateth.da

OODBMS have also been used to provide support Ed §Hudson
and King, 1987; Bandinelbt al, 1994). However, OODBMS still do not
offer some of the special services that PCTE pesjics it was pointed
out in this paper. On the other hand, they haven bmaere successful
commercially.

Although a lot of work has been done to provide ima@isms for
data integration, there are few works on methodaifiport the suppliers
of tools in designing models to achieve data irgegn. Brémeau’s
method, which is the basis of our work, is onelam. We have used
OMT (Rumbaugtet al, 1991) to achieve a design method that deals not
only with the data aspects of integration but alsth the behavioural
ones.

In the database literature theories and methode haen proposed
for schema integration (Batiet al, 1986; Kim, 1991; Spaccapietra and
Parent, 1994). These works consist in identifyingilarities and
differences between elements of different schenrasaddition, they
search for sets of distinct elements which areriaelated by some
semantic property. Nevertheless, the main focubede works is object
(entity) integration. Ribeire@t al, 1994) have proposed a taxonomy of
behavioural conflicts applied to object-orientedenegeneous databases.

CONCLUSIONS

This paper presents an extension of Brémeau’s rdetiinich makes
the design of sharable data schemas in softwaleesring environment
more systematic and easier. In particular, it foaus PCTE and
OODBMS as alternatives data repository for SEE. pitegosed method
is based on OMT and uses integration rules derivech the PCTE
standard. A case study which shows the applicatibthe proposed
method to the integration of three CASE tools wascdbed and
analyzed.

It was observed that the tool schema integratioa mplex task
which involves syntactical, semantic and optimiatissues. Although

952 Gimeneset al.

the case study involved only three open tools vigtv objects and
associations, the integration of the object, dywamand functional
models was very laborious. It required a lot of artit analysis. We can
also point out that the instance diagrams did nove its benefits.
Equivalent studies can be carried out using theadhya and functional
models.

Although PCTE is based on a simple modelling apgrosuch as
ERA, its integration facilities are difficult to @sp due to the standard
extension and complexity. Improvements have beerdemto the
standard, which include dealing with fine grainedtad and object
orientation (Object Management Group, 1995a) (Qbjanagement
Group, 1995b)

Additional work needs to be done to formalize theegration rules
for the dynamic and functional models, as welladdvelop of a tool to
support the proposed method.

REFERENCES

BANDINELLI, S., FUGGETTA, A, GHEZZIl, C. & LAVAZZA, L Spade: an
environment for software process analysis, desigd,enactment, In: FINKELSTEIN,
A., KRAMER, J. & NUSEIBEH, B. (ed.).Software Process Modelling and
TechnologyEngland: John Wiley & Sons, 1994. p. 223-244.

BATINI, C., CERI, S. & NAVATHE, S.B.Conceptual database design: an entity-
relationship approachThe Benjamin/Cummings Publishing Company, 1992.

BATINI, C., LENZERINI, M. & NAVATHE, S.B.A. Comparative Analysis of
Metodologies for Database Schema IntegrathddM Computing Survey48(4):323-
364, 1986.

BREMEAU, C. & THOMAS, I. A schema design method for FE;Tn: Proceedings of
the PCTE’'93 Conferencé&993.

BREMEAU, C. & THOMAS, |. Designing schema for object bas&MWG Technology
Series, 1996.

BROWN, AW., CARNEY, D.J., MORRIS, E.J., SMITH, D.B. & ZARREA, P.F.
Principles of case tool integratiptNew York: Oxford University Press, 1994.

EDS DEFENSE LIMITED.PORTOS - A Technical Overvighssue 1.0, Camberley,
England, 1994.

FINKELSTEIN, A., KRAMER, J. & NUSEIBEH, B. (ed.)Software process modelling
and technologyJohn Wiley & Sons, 1994.

HUDSON, S.E. & KING, R. Object-oriented databaseparpfor software environments,
ACMO0-89791-236-5/87/0005/0491987.

Designing sharable data schemas 953

KIM, W. Classifying schematic and data heterogeiitynultidatabe system&omputer
24(12):12-18, 1991.

MUNCK, R., OBERNDORF, P., PLOEREDER, E. & THALL, R. An ovaw of
DOD_STD_1838A (proposed), the common APSE interfae, Revision A.
SIGPLAN. Notice4(2):235-247, 1989.

OBJECT MANAGEMENT GROUP PCTE SIGG (Fine Grain Data) Extensions to the
PCTE (Portable Common Tool Environment) Standard (BB0-13719) 1995 (draft
version).

OBJECT MANAGEMENT GROUP PCTE SI®O (Object-Oriented) Extensions to the
PCTE (Portable Common Tool Environment) Standard (BB0-13719) 1995 (draft
version).

REISS, S.P. Simplifying data integration: the desif the desert software development
environment. In: INTERNATIONAL CONFERENCE ON SOFTWRE
ENGENEERING, 18, 1996, BerlinRroceedings. Berlim, 1996. p. 25-29.

RIBEIRO, C.F.P., CASTILHO, J.M. & OLIVEIRA, J.P.M. Estaiiing sameness in
object-oriented conceptual modelling, In: CONFERENCE @HE CHILEAN
COMPUTER SOCIETY CONCEPTION, 14, 1994, Chikrpceedings..Chile, 1994,
p. 471-482.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F. & LORERSEN, W.
Object-oriented modelling and desidrocal: Prentice-Hall International, 1991.

SCHEFSTROM, VAN DEN BROEK, D.Tool Integration: Environments and
Frameworks, John Wiley & Sons, England: 1993.

SPACCAPIETRA, S. & PARENT, C. View integration: a steprward in solving
structural conflicts. IEEE Transactions on Knowledge and Data Engineering
6(2):258-274, 1994.

STANFORD MANAGEMENT GROUP.Dbench technical overviewStanford, USA,
1995. (Technical Report).

THOMAS, |. & NEJMEH, B. Definitions of tool integran for environments for
environments|EEE Software, 8):29-35, 1992.

TRANSTAR SOFTWARE INC.Course: PCTE and the emeraude PCTE framework.
Paris, 1995. (Slides).

TRANSTAR SOFTWARE INCTranstar Repositoryrepository models, Paris, 1996.

WAKEMAN, L. & JOWETT, J. PCTE: The standard for open repositorigsngland:
Simon & Schuster International, 1993.

WASSERMAN, A. Tool integration in software engine®yienvironments, In: LONG, F.
(ed.), Software engineering environments. LectureteBl in Computer Science
467:138-150, Berlin: Springer-Verlag, 1990.

