
Revista UNIMAR 19(4):937-953, 1997.

AN OBJECT-ORIENTED METHOD FOR DESIGNING
SHARABLE DATA SCHEMAS IN SOFTWARE

ENGINEERING ENVIRONMENTS

Itana M. S. Gimenes, Cristina D. Aguiar Ciferri*,

Edicezar L. Nanni + and Selma B. Sabião +✢✢✢✢

ABSTRACT . The integration of CASE tools in software engineering
environments requires a set of integration mechanisms to allow data sharing,
communication and process conformance. Solutions for the sharing and dynamic
management of data schemas in these environments comprise specific
repositories, such as PCTE, and object-oriented database management systems
(OODBMS). This paper presents an extension with object-oriented concepts to
Brémeau’s method for designing sharable data schemas. The extension applies
both to PCTE and OODBMS. An application of the proposed method is shown
through a case study which presents and integrates three CASE tools.
Key words: data integration, data schema, software engineering environments.

UM MÉTODO ORIENTADO A OBJETOS PARA PROJETAR
ESQUEMAS COMPARTILHÁVEIS DE DADOS EM
AMBIENTES DE ENGENHARIA DE SOFTWARE

RESUMO. A integração de ferramentas CASE em ambientes de engenharia de
software requer um conjunto de mecanismos de integração que permitam
compartilhamento de dados, comunicação e uniformidade de processos. Soluções
para o compartilhamento e o gerenciamento dinâmico de esquemas de dados
nesses ambientes envolvem repositórios específicos, tais como PCTE, e sistemas
gerenciadores de banco de dados orientados a objetos (OODBMS). Este artigo
apresenta uma extensão que introduz conceitos de orientação a objetos ao
método de Brémeau para projetar esquemas de dados compartilháveis. A
extensão proposta se aplica tanto ao PCTE quanto aos OODBMS. Uma aplicação

* Departamento de Informática, Universidade Estadual de Maringá, Av. Colombo, 5790,

Câmpus Universitário, 87020-900, Maringá-Paraná, Brasil. E-mail: itana@din.uem.br
✢ Instituto de Computação, Universidade Estadual de Campinas, Campinas-São Paulo,

Brasil.
Correspondência para Itana M. S. Gimenes
Data de recebimento: 08/08/97.
Data de aceite: 28/11/97.

938 Gimenes et al.

do método proposto é descrita por meio de um estudo de caso que apresenta e
integra três ferramentas CASE.
Palavras-chave: integração de dados, esquemas de dados, ambientes de engenharia de

software.

INTRODUCTION

The CASE1 technology is based on products which help the
developers in some areas of the software process such as: organisation
and documentation of the process, analysis and design of the software
and configuration and version management. In general, one CASE tool
does not cover all phases of the software process. This leads developers
and managers to use several tools in the same project. These tools are
produced by different suppliers which follow neither standard means of
communication nor standard data formats. Thus, project developers and
managers have been facing the difficult problem of selecting and
administrating a completely independent and diverse set of tools.

Several studies have been made to define mechanisms which
facilitate the integration of CASE tools (Schefström, 1993; Brown et al.,
1994). Integration models presented in Wasserman (1990) and Thomas
and Nejmeh (1992) distinguished, at least, three independent dimensions
through which integration issues can be examined: data, control and
presentation. Data integration aims at defining mechanisms to
dynamically administrate sharable data schemas. This paper focuses on
data integration.

In addition to support mechanisms, data integration requires a
systematic design of tool schemas. It is necessary to identify clusters of
types with common features such as: versions, stability, and permissions
and access control. It is also important to maximize the reuse of existing
types by trying to define a uniform semantics for the types used by
several tools. Thus, a conventional data modelling method is not
sufficient to model the data of CASE tools which are integrated into open
Software Engineering Environments (SEE).

This paper presents an object-oriented method for designing sharable
data schemas for open SEE repositories. In particular, it focuses on SEE
based on Portable Common Tool Environment (PCTE) and Object-
Oriented Database Management Systems (OODBMS). An application of

1 Computer Aided Software Engineering.

Designing sharable data schemas 939

the proposed method is shown through a case study which presents and
integrates three CASE tools.

Section 2 presents PCTE and OODBMS as potential data
repositories for SEE. Section 3 describes the proposed method as an
extension of Brémeau’s method while section 4 presents the case study.
Section 5 summarizes most relevant related works and, finally, section 6
presents the conclusions.

DATA REPOSITORIES FOR SEE

Several approaches for data repository have been developed for SEE.
The first generation of them was based on Entity-Relationship-Attribute
(ERA) or relational modelling extensions. More recently, specialized
object bases, such as PCTE, and commercial OODBMS have been
consolidated as potential options for SEE. This section discusses the
features of PCTE and OODBMS for SEE.

PCTE

PCTE (ISO/IEC 13719) (Wakeman and Jowett, 1993) is a standard
which defines a public tool interface to serve as base for the construction
of open SEE. PCTE uses an ERA enriched with several features of
integration and security which make the modelling of data schema
special.

PCTE represents data, attributes and links as objects of specific
types. These objects are represented, in the object base, either as
individual types or as collections of related types which are called SDS
(Schema Definition Set). Each SDS represents part or the whole model
of a tool or an activity. A SDS is a composite object of which the
components are called type_in_SDS. SDSs are used to define specific
sets of the data manipulated by the tool into the object base. When new
types are defined in PCTE, they can be integrated with the existing SDSs
into the object base. PCTE already offers pre-defined SDSs, such as:
system, metasds, security and accounting. The general structure of tool
integration into PCTE is illustrated in Figure 1. It shows a SDS for a
Requirement Analysis Tool integrated with a SDS of a Coding Tool.

PCTE provides a specific view for each tool through the working
schema mechanism. Each working schema represents a particular domain
or view, such as the role of a user (e.g. programmer or manager) or the

940 Gimenes et al.

view of a tool or activity (e.g. requirement elicitation or coding). In
PCTE, every process has its associated working schemas which enable
them to access their instances. Thus, it is through these schemas that
executable tools recognise the representation of their data models.

. . .

SDSs

Existing Types into
PCTE RepositorySource_code_typePerson_typeDiagram_type

Coding Tool

Communication between
Tools and PCTE

Requirements
Analysis Tool

Figure 1. Tool integration in PCTE.

A working schema is a well formed union of types of a sequence of
SDSs. This gives origin to a set of type_in_working_schema. PCTE
provides built-in well defined rules to integrate properties of the defined
type into the SDS sequence that composes the working schema. These
rules and operations form the mechanisms for dynamic schema
management that enable the insertion of tools into open SEE. In addition,
they provide a strong basis for reusing the types already defined in the
environment base.

In addition to the data management services, PCTE also provides
services for process control, definition of access groups, tool enveloping
(for external tools) and tool communication via notification.

Although it has become an international standard, PCTE did not
achieve the expected commercial success. Few companies have built
environments or frameworks based on this standard (Stanford
Management Group, 1995; EDS, 1994).

OODBMS

One of the reasons for PCTE difficulties is the parallel improvement
of OODBMS which start to offer a competitive set of services for SEE.

The main advantages of using OODBMS are that they encompass all
the advantages of the object-oriented approach. This gives flexibility to

Designing sharable data schemas 941

define both the characteristics and the behaviour of objects. More
modern OODBMS implement mechanisms such as triggers, notifications
and invocations, that can be used to verify rules and constraints over
classes. Special libraries for software engineering can be acquired from
the market which can form an appropriate layer over OODBMS. These
library services can be extended by adding new classes with more
specific characteristics and behaviours. Thus, more modern and efficient
tools, already designed for an object-oriented framework can take
advantage of these services to achieve better performance. However,
OODBMS do not usually provide services for dynamic definition and
manipulation of schemas. They do not usually support the definition of
set of types that a tool can view or access, such as the SDSs and working
schemas of PCTE. Another shortcoming is the lack of built-in rules for
schema integration. Thus, the use of OODBMS as the base of open SEE
requires the implementation of a layer to support specific services, as
mentioned above.

Therefore, it is not straightforward to decide on the best alternative
for data integration. When using OODBMS, additional work is needed to
support particular SEE facilities based on simple data abstraction
services. On the other hand, PCTE restricts the SEE development to a
specific architectural mode.

AN OBJECT-ORIENTED METHOD FOR DESIGNING
SHARABLE DATA SCHEMAS

This section describes an extension with object-oriented concepts to
Brémeau’s method (Brémeau and Thomas, 1993, 1996) for designing and
integrating sharable data schemas. This extension makes the design
easier both for PCTE and OODBMS. Section 3.1 presents a summary of
Brémeau’s method, pointing out its shortcomings. Section 3.2 presents
the proposed extensions.

Brémeau’s Method

This method has four main activities or phases: conceptual design,
logical design, definition of SDSs, review and validation (see Figure 2).

The conceptual design takes as input data and operation concepts
plus software process assumptions and performs the conceptual data
modelling of the tool. It offers as output ERA global schemas and

942 Gimenes et al.

instance diagrams. This phase is decomposed into five steps:
define/refine Data Flow Diagram (DFD), define/refine data models,
integrate data models, create instance diagrams, and create subset and
usage schemas. This phase is completely PCTE-independent. ERA
models may even include some n-ary relationships which are not defined
by the PCTE OMS2. Some of the relevant aspects analyzed in this phase,
regarding tool integration, are:

- the groups of users (and their respective roles) which perform
operations on data stores as this is important to define the access
to data from the tools;

- the effect of operations over related data stores in order to define
data clusters of the tools.

The logical design takes as input the ERA global schemas and
instance diagrams, produced in the conceptual design, plus existing
groups, types, SDSs and tools in the SEE. It offers as output annotated
global schemas and instance diagrams with clusters. This phase is
decomposed into four steps: identify clusters, refine global schemas,
revise instance diagrams and annotate global schemas. This part of the
method represents the transition to the PCTE-specific schema design. It
takes the instance diagrams and draws cluster boundaries on them,
corresponding to the cluster criteria of: versioning, stability, concurrence
and discretionary and mandatory access permissions.

The definition of SDSs takes as input the set of ERA subset and
usage schemas, produced in the conceptual design, plus annotated global
schemas and instance diagrams with clusters produced in the logical
design. It delivers as output a list of SDSs. It is decomposed into three
steps: select PCTE-type properties, evaluate cluster semantic support and
allocate PCTE global schemas to SDSs. This phase exploits the
annotated schemas to make final decisions on the choice of appropriate
PCTE types and links.

The review and validation takes as input: a list of SDSs, produced in
the definition of SDSs; the DFD processes, operations and groups,
produced in the conceptual design; and the initial operation concepts.
The output is the validated list of SDSs. It is decomposed into three
steps: analyse performance, check design robustness and validate SDSs.

2 Object Management Systems.

Designing sharable data schemas 943

In addition, there are feedbacks between the phases in order to obtain
a more precise and integrated modelling. A complete description of
Brémeau’s method can be found in (Brémeau and Thomas, 1996).

A shortcoming of Brémeau’s method is that it is too specific for
PCTE. In addition, it is not based on an object-oriented design method.

The Proposed Method

The objective of the proposed method is to incorporate object-
oriented concepts in order to make the mapping of the tool’s data
schemas both onto PCTE and OODBMS easier, thus considering data,
behavioural and functional aspects. The main difference between the
proposed and Brémeau’s method is related to the conceptual design
phase. In this phase Brémeau’s method is based on (Batini et al., 1992)
whereas our method is based on OMT (Rumbaugh et al., 1991). The
differences between the methods are illustrated in Figure 2. In this figure
normal fonts represent information of both methods; italic fonts apply
only for Brémeau’s method; and bold fonts belong to the proposed
method.

In the following sections the extensions proposed to each phase of
Brémeau’s method are presented.

Perform
Conceptual

Design

Perform
Logical
Design

Define
SDSs

Review
and

Validate

data
concepts

operation
concepts

software process assumptions

existing
groups,
types,
SDSs,
tools

ERA global
schemas
+ instance
diagrams

set of ERA
subset &
usage
schemas

annotated
global
schemas +
instance
diagrams
with
clusters

list of SDSs validated
list of
SDSs

DFD processes, operations, groups

data model feedback

performance feedback

behavioural
and functional
concepts

object, dynamic
and funcional
models

annotated
object
models

models feedback

Figure 2. Overview of Brémeau’s and proposed method.

944 Gimenes et al.

Conceptual Design

This phase consists of modelling the tools using OMT. It takes as
input data, behavioural and functional concepts of the tool plus software
process assumptions and produces the object, dynamic and functional
models.

The object model represents the static and structural aspects of the
tool’s sharable data. This modelling should identify classes of objects,
associations and aggregations between objects. It should also consider
the object attributes and their relationships. Inheritance should be used to
organize and simplify class structuring.

The dynamic model represents the temporal and behavioural aspects
of the tool, mainly the sequence of interactions between operations. This
model requires the definition of scenarios, and typical and exceptional
sessions in which the tool operates. This modelling should: identify
external events between the tool and the external world; design a state
diagram for each active object, emphasising both the event patterns that
it receives and sends, and the actions it executes; and compare events
between state diagrams. The final dynamic model is composed of the set
of individual state diagrams.

The functional model represents the tool’s operations, not
considering when or how. In this modelling, a DFD is designed based on
the identification of the input and output values of the tool services.

This phase offers the basis for mapping the models either to PCTE or
to OODBMS in the following steps of the method. For simplicity,
hereafter, we refer to PCTE or OODBMS as object base.

The following phases of the proposed method are very similar to
Brémeau’s method. One of the differences is that Brémeau’s method
constructs instance diagrams in the conceptual design phase, based on
DFDs, whereas the proposed method derives these diagrams from the
logical design, based on the object and dynamic models. Note that we
assume that an equivalent concept of SDSs and working schemas will be
applied to OODBMS.

Logical Design

This phase consists of the mapping of the OMT models onto the
schemas of the object base. It takes as input object, dynamic and
functional models and delivers as output annotated object models and
instance diagrams with clusters. Three main steps are involved: design of

Designing sharable data schemas 945

instance diagrams, identification of clusters and annotation of the object
model. In addition, refinements of the OMT models may take place. The
instance diagrams are designed based on the object and dynamic models.
They describe the behaviour of specific sets of objects before and after
each operation. These diagrams are drawn to analyse the boundaries
between related objects and makes group those which participate with
the same operations into clusters.

The annotation step makes the initial mapping of the associations and
attributes of the object model onto the particular properties of the object
base. This mapping takes into consideration the pre-defined types of the
object base. For instance, PCTE attributes can be mapped onto: boolean,
float, integers, natural, string, time, enumeration or contents. New types
are only created if an equivalent type is not already defined. In PCTE,
associations can be mapped to properties such as: composition,
existence, referential integrity and relevance to the origin.

Definition of SDSs

This step produces a list of SDSs from the annotated object model
and the instance diagrams with clusters. Three activities are involved:
select the final type properties of the object base, evaluate the selected
properties and produce the list of SDSs.

The first activity consists of taking decisions to complete the initial
mapping of the object model developed in the previous phase. For
instance, in PCTE, if an association is annotated as not having the
composition property but the referential integrity, the choices of
association types are restricted to existence, reference or implicit. There
might be cases in which the annotations do not lead to a straightforward
mapping onto the object base and feedback to the previous step is
necessary to adjust the models.

The evaluation step checks whether the selected types of objects,
associations and attributes conform with the requirements of the logical
design. For instance, it verifies whether the association properties are
appropriate to support the defined clusters.

The list of SDSs should take into account that the defined schemas
may be reused by further tools integrated into the environment.

946 Gimenes et al.

Revision and Validation

This phase is very similar to the equivalent one in Brémeau’s
method. Thus, it analyzes the performance and robustness of the
proposed list of SDSs.

A CASE STUDY USING THE PROPOSED METHOD

This section presents an experiment related to the first step of the
proposed method. It consists of modelling three CASE tools and
developing their integrated models. It aims at producing integrated
models which are more concise and increase data and behavioural
sharing. The models were designed at a high level, only considering the
main characteristics and most basic operations of the tools. Although we
have developed the three OMT models in this experiment, due to space
limitations, here we present only the object and dynamic models.

The tools used in the experiment are: a version management, a
project management and a bug tracking. This example is an object-
oriented version of the model described in (Brown et al., 1994), using the
ERA model. Figures 3 to 5 show the individual object models of these
tools while Figure 6 presents the integrated object model.

name
dept

person
name
date
status

document
v_no
date
comment

version
name
vendor
date

tool

creates

responsible
for has

produced
by

Figure 3. The object model for the version management tool.

name
grade

manager
name
date
budget

project
name
status
deadline

product
name
status
date

unfixed bugs

producesassigned has

Figure 4. The object model for the project management tool.

The integrated object model was drawn by identifying and
solving conflicts amongst similar and different representations of
related data of the tools. For instance, person (Figure 3), manager

Designing sharable data schemas 947

(Figure 4) and developer (Figure 5) were integrated into the person
class (Figure 6). Similar correspondences were determined between
classes and associations. This can be observed in the integration of
the associations responsible for (Figure 3) and assigned (Figure 4).
Another kind of integration was obtained by generalizing the objects
project, design, program and module to the superclass document.
This generalization was based on the fact that the objects of both the
project management and the bug tracking tool are also versionable.
The attribute status was not previously part of all the object
subclasses but it was maintained in the document for semantic reason.

name
date
size

program
name
date

module
name
grade

developer

implemented by includes

has_reported

name
date

design
date
status
severity

bug report

assigned totracked to

Figure 5. The object model for the bug tracking tool.

name
vendor
date

tool
v_no
date
comment

version
name
date
status

document
name
dept
grade

person

name
severity
date
status

bugs

produced by has responsible for assigned to

name
status
deadline

product
budget

project
size

program

design module

developed by implemented by includesproduces

tracked to

Figure 6. The integrated object model for the tools.

Some associations present in the individual models were eliminated
from the integrated model as they became redundant (e.g. creates in
Figure 3). On the other hand, additional semantic associations were
included (e.g. developed by in Figure 4).

948 Gimenes et al.

The dynamic models for each tool are presented in Figures 7 to 9
while the integrated model is shown in Figure 10. The integration of
the dynamic models aimed at maintaining the equivalent operations
amongst the tools in order to increase behaviour sharing. The
integrated dynamic model was developed respecting the integrated
object model. For instance, based on the integration of person, the
operations of the corresponding objects were also integrated. As in
the integrated object model the objects related to document were
generalized, the correspondent operations in the dynamic model were
integrated and assigned to this superclass. Further refinements may
be necessary to customize the operations of the subclasses.

do: entry
required option

start

do: verify required option

do: entry
document data

do: entry
person data

do: entry tool
data

do: entry
document name

option

[option=register tool][other options]
[option=register

document]
[option=register person]

do: verify
person data

[person data]

do: register
person

not registered person

do: verify
document name

[document name]

do: execute
required option

registered document

re
g
is

te
re

d
 p

e
rs

o
n

n
o
t
re

g
is

te
re

d
 d

o
cu

m
e
n
t do: verify

tool data

[tool data]

do: register
 tool

not registered tool

do: verify
document data

[document data]

do: register
document

not registered document

re
g
is

te
re

d
 d

o
cu

m
e
n
t

[r
e
g
is

te
re

d
 d

o
cu

m
e
n
t
d
a
ta

]

registered tool

[r
e
g
is

te
re

d
 t
o
o
l d

a
ta

]

[r
e
g
is

te
re

d
 p

e
rs

o
n
 d

a
ta

]

do: seek
document versions

do: entry
version number

[option=
generate
or edit

version]

[option=
edit

document
history]

Figure 7. The dynamic model for the version management tool.

The integrated models obtained are concise and clear, and they
avoid data and operation redundancies that could occur if the tools
worked isolated. We can observe that further refinements are
necessary to achieve completeness. In real experiences, this needs to
be done taking into account the data and operation requirements of
the specific environment and tools being modelled.

Designing sharable data schemas 949

do: entry
required option

start

do: verify required option

do: entry
project data

do: entry
manager data

do: entry
manager name

option

[option=register
project]

do: verify
manager data

[manager data]

do: register
manager

not registered manager

do: verify project
name

[project name]

do: execute
required option

registered project

re
gi

st
er

ed
 m

an
ag

er

no
t r

eg
is

te
re

d
pr

oj
ec

t

do: verify
manager name

[manager name]

do: verify
manager projects

registered manager

do: verify project
data

[project data]

do: register
project

not registered project

re
gi

st
er

ed
 p

ro
je

ct
[r

eg
is

te
re

d
pr

oj
ec

t d
at

a]

not registered manager

[r
eg

is
te

re
d

m
an

ag
er

 d
at

a]

do: entry
product data

do: entry
bug data

[option=
register

bug]

[option=
register
product]

do: list
projects

[other
options]

[option=register manager] [option=list manager projects]

do: entry
project name

[projects]

lis
te

d
pr

oj
ec

ts

Figure 8. The dynamic model for the project management tool.

do: entry
required option

start

do: verify required option

do: entry
design data

do: entry
developer data

do: entry
program name

do: entry
design name

option

[other options]
[option=register

design]
[option=register developer]

do: verify
developer data

[developer data]

do: register
developer

not registered developer

do: verify
design name

[design name]

do: execute
required option

registered design

re
gi

st
er

ed
 d

ev
el

op
er

no
t r

eg
is

te
re

d
de

si
gn

do: verify
program name

[program name]

do: verify
program bugs

registered program

do: verify
design data

[design data]

do: register
design

not registered design

re
gi

st
er

ed
 d

es
ig

n
[r

eg
is

te
re

d
de

si
gn

 d
at

a]

not registered program

[r
eg

is
te

re
d

de
ve

lo
pe

r
da

ta
]

do: entry
bug data

do: entry
program data

[option=
register

program]

[option=
register

bug]

do: list
program bugs

[o
pt

io
n=

lis
t p

ro
gr

am
 b

ug
s]

[program bugs] lis
te

d
pr

og
ra

m
 b

ug
s

Figure 9. The dynamic model for the bug tracking tool.

950 Gimenes et al.

do: entry
required option

do: entry
person data

do: verify
person data

[person data]

do: register
person

not registered person

re
gi

st
er

ed
 p

er
so

n
[r

eg
is

te
re

d
pe

rs
on

 d
at

a]

do: verify required
option

option

[option=
register person]

do: entry
document data

do: verify
document data

[document data]

do: register
document

not registered document

[option=register
document]

re
gi

st
er

ed
 d

oc
um

en
t

[r
eg

is
te

re
d

do
cu

m
en

t d
at

a] do: entry tool
data

do: verify
tool data

[tool data]

do: register
 tool

not registered tool

[option=
register tool]

do: entry
person name

do: verify
person name

[person name]

do: verify
person projects

registered person

[projects]

do: list
projects

[option=list
person

projects]

no
t r

eg
is

te
re

d
pe

rs
on

re
gi

st
er

ed
 to

ol
[r

eg
is

te
re

d
to

ol
 d

at
a]

do: entry
document name

do: entry
 bug data

do: execute
required option

[o
th

er
 o

pt
io

ns
]

[document name]

registered document

[option=register
 bug]

do: entry
program name

do: verify
document name

[option=register
product]

[option=edit
document

history]
do: entry

product data

[option=generate ou edit version]

do: entry
version number

do: seek
document
versions

lis
te

d
pr

oj
ec

ts

start

do: verify
program name

do: verify
program bugs

do: list
program bugs

no
t r

eg
is

te
re

d
do

cu
m

en
t

registered
program

[program
bugs]

option=list
program bugs

[program
name]

not registered program

lis
te

d
pr

og
ra

m
 b

ug
s

Figure 10. The integrated dynamic model for the tools.

RELATED WORK

Ideas of data integration were introduced since the Ada Programming
Environment, which proposed a central repository to state the data shared
by its services (Munch et al., 1989). One of the major works in this area
is PCTE (Wakeman and Jowett, 1993). This standard establishes
advanced services to design and integrate the tool’s schemas. There are
commercial implementations of this standard (Transtar, 1995; EDS,
1994) and several environments were based on it (Finkelstein et al.,
1994). A more recent work by Transtar (Transtar, 1996) brings about a
NIM (Neutral Information Model) which provides a meta-model to allow

Designing sharable data schemas 951

the mapping of tools to a unified basis. (Reiss, 1996) uses a simplified
form of data integration, called fragment integration, (logical unit) which
involves creating a simple database by identifying logical portions of
files and storing references to these portions as well as additional
information to define links and store associated data.

OODBMS have also been used to provide support for SEE (Hudson
and King, 1987; Bandinelli et al., 1994). However, OODBMS still do not
offer some of the special services that PCTE provides, as it was pointed
out in this paper. On the other hand, they have been more successful
commercially.

Although a lot of work has been done to provide mechanisms for
data integration, there are few works on methods to support the suppliers
of tools in designing models to achieve data integration. Brémeau’s
method, which is the basis of our work, is one of them. We have used
OMT (Rumbaugh et al., 1991) to achieve a design method that deals not
only with the data aspects of integration but also with the behavioural
ones.

In the database literature theories and methods have been proposed
for schema integration (Batini et al., 1986; Kim, 1991; Spaccapietra and
Parent, 1994). These works consist in identifying similarities and
differences between elements of different schemas. In addition, they
search for sets of distinct elements which are interrelated by some
semantic property. Nevertheless, the main focus of these works is object
(entity) integration. Ribeiro et al., 1994) have proposed a taxonomy of
behavioural conflicts applied to object-oriented heterogeneous databases.

CONCLUSIONS

This paper presents an extension of Brémeau’s method which makes
the design of sharable data schemas in software engineering environment
more systematic and easier. In particular, it focus on PCTE and
OODBMS as alternatives data repository for SEE. The proposed method
is based on OMT and uses integration rules derived from the PCTE
standard. A case study which shows the application of the proposed
method to the integration of three CASE tools was described and
analyzed.

It was observed that the tool schema integration is a complex task
which involves syntactical, semantic and optimization issues. Although

952 Gimenes et al.

the case study involved only three open tools with few objects and
associations, the integration of the object, dynamic and functional
models was very laborious. It required a lot of semantic analysis. We can
also point out that the instance diagrams did not prove its benefits.
Equivalent studies can be carried out using the dynamic and functional
models.

Although PCTE is based on a simple modelling approach such as
ERA, its integration facilities are difficult to grasp due to the standard
extension and complexity. Improvements have been made to the
standard, which include dealing with fine grained data and object
orientation (Object Management Group, 1995a) (Object Management
Group, 1995b)

Additional work needs to be done to formalize the integration rules
for the dynamic and functional models, as well as to develop of a tool to
support the proposed method.

REFERENCES

BANDINELLI, S., FUGGETTA, A., GHEZZI, C. & LAVAZZA, L. Spade: an
environment for software process analysis, design, and enactment, In: FINKELSTEIN,
A., KRAMER, J. & NUSEIBEH, B. (ed.). Software Process Modelling and
Technology. England: John Wiley & Sons, 1994. p. 223-244.

BATINI, C., CERI, S. & NAVATHE, S.B. Conceptual database design: an entity-
relationship approach. The Benjamin/Cummings Publishing Company, 1992.

BATINI, C., LENZERINI, M. & NAVATHE, S.B.A. Comparative Analysis of
Metodologies for Database Schema Integration, ACM Computing Surveys, 18(4):323-
364, 1986.

BRÉMEAU, C. & THOMAS, I. A schema design method for PCTE, In: Proceedings of
the PCTE’93 Conference, 1993.

BRÉMEAU, C. & THOMAS, I. Designing schema for object bases, SMG Technology
Series, 1996.

BROWN, A.W., CARNEY, D.J., MORRIS, E.J., SMITH, D.B. & ZARRELLA, P.F.
Principles of case tool integration, New York: Oxford University Press, 1994.

EDS DEFENSE LIMITED. PORTOS - A Technical Overview, Issue 1.0, Camberley,
England, 1994.

FINKELSTEIN, A., KRAMER, J. & NUSEIBEH, B. (ed.). Software process modelling
and technology, John Wiley & Sons, 1994.

HUDSON, S.E. & KING, R. Object-oriented database support for software environments,
ACM0-89791-236-5/87/0005/0491, 1987.

Designing sharable data schemas 953

KIM, W. Classifying schematic and data heterogenity in multidatabe systems. Computer,
24(12):12-18, 1991.

MUNCK, R., OBERNDORF, P., PLOEREDER, E. & THALL, R. An overview of
DOD_STD_1838A (proposed), the common APSE interface set, Revision A.
SIGPLAN. Notices 24(2):235-247, 1989.

OBJECT MANAGEMENT GROUP PCTE SIG. FG (Fine Grain Data) Extensions to the
PCTE (Portable Common Tool Environment) Standard (ISO/IEC-13719), 1995 (draft
version).

OBJECT MANAGEMENT GROUP PCTE SIG. OO (Object-Oriented) Extensions to the
PCTE (Portable Common Tool Environment) Standard (ISO/IEC-13719), 1995 (draft
version).

REISS, S.P. Simplifying data integration: the design of the desert software development
environment. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGENEERING, 18, 1996, Berlim. Proceedings... Berlim, 1996. p. 25-29.

RIBEIRO, C.F.P., CASTILHO, J.M. & OLIVEIRA, J.P.M. Establishing sameness in
object-oriented conceptual modelling, In: CONFERENCE OF THE CHILEAN
COMPUTER SOCIETY CONCEPTION, 14, 1994, Chile, Proceedings... Chile, 1994,
p. 471-482.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F. & LORENSEN, W.
Object-oriented modelling and design. Local: Prentice-Hall International, 1991.

SCHEFSTRÖM, VAN DEN BROEK, D. Tool Integration: Environments and
Frameworks, John Wiley & Sons, England: 1993.

SPACCAPIETRA, S. & PARENT, C. View integration: a step forward in solving
structural conflicts. IEEE Transactions on Knowledge and Data Engineering,
6(2):258-274, 1994.

STANFORD MANAGEMENT GROUP. Dbench technical overview, Stanford, USA,
1995. (Technical Report).

THOMAS, I. & NEJMEH, B. Definitions of tool integration for environments for
environments, IEEE Software, 9(3):29-35, 1992.

TRANSTAR SOFTWARE INC. Course: PCTE and the emeraude PCTE framework.
Paris, 1995. (Slides).

TRANSTAR SOFTWARE INC. Transtar Repository: repository models, Paris, 1996.

WAKEMAN, L. & JOWETT, J. PCTE: The standard for open repositories; England:
Simon & Schuster International, 1993.

WASSERMAN, A. Tool integration in software engineering environments, In: LONG, F.
(ed.), Software engineering environments. Lecture Notes in Computer Science
467:138-150, Berlin: Springer-Verlag, 1990.

