Statistical procedure for the composition of a sensory panel of blends of coffee with different qualities using the distribution of the extremes of the highest scores

  • Marcelo Ângelo Cirillo Universidade Federal de Lavras http://orcid.org/0000-0003-2026-6802
  • Mariana Figueira Ramos Universidade Federal de Lavras
  • Flávio Meira Borém Universidade Federal de Lavras
  • Felipe Mesquita de Miranda Universidade Federal de Lavras
  • Diego Egídio Ribeiro Universidade Federal de Lavras
  • Fortunato Silva de Menezes Universidade Federal de Lavras
Palavras-chave: canephora, arabica, mixture, models.

Resumo

The identification and interpretation of discrepant observations in sensory experiments are difficult to implement since the external effects are associated with the individual consumer. This fact becomes more relevant in experiments that involve blends, which scrutinize coffees with different qualities, varieties, origins, and forms of processing and preparation. This work proposes a statistical procedure that facilitates the identification of outliers while also evaluating the discriminatory powers of a sensory panel concerning the differentiation of pure blends and coffees. For this purpose, four experiments were performed that tested coffees with different qualities and varieties. The results suggest that the statistical procedure proposed in this work was effective for discriminating the blends relative to the pure coffees and that the effects of the concentrations and types of processing did not interfere with the statistical evaluations.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcelo Ângelo Cirillo, Universidade Federal de Lavras
Prof. Associado Nível III - Departamento de Ciências Exatas - Universidade Federal de Lavras, Pesquisador nível II - Bolsista de Produtividade
Mariana Figueira Ramos, Universidade Federal de Lavras
Mestre em Estatística e Experimentação Agropecuária
Flávio Meira Borém, Universidade Federal de Lavras
Prof. Titular do Depto de Engenharia Agrcola (DEG), Universidade Federal de Lavras (UFLA), pesquisador do CNPq 1D
Felipe Mesquita de Miranda, Universidade Federal de Lavras
Graduando em Engenharia Agrícola
Diego Egídio Ribeiro, Universidade Federal de Lavras
Doutor em Engenharia Agrícola
Fortunato Silva de Menezes, Universidade Federal de Lavras
Prof. Associado IV - Depto de Física

Referências

Alessandrini, L., Romani, S., Pinnavaia, G., & Rosa, M. D. (2008). Near infrared spectroscopy: an analytical to tool predicted coffee roasting degree. Analytica Chemical Acta, 625(1), 95-102. DOI: 10.1016/j.aca.2008.07.013

Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. A., & Pinto, A. C. F. (2017). Physiological and sensorial quality of arabica coffee subject to different temperatures and drying airflows. Acta Scientiarum. Agronomy, 39(2), 225-233. DOI: 10.4025/actasciagron.v39i2.31065

Barbosa, J. M., Borém, F. M., Alves, H. M. R., Cirillo, M. A., & Maguas, C. (2019). Isotopic signature of the relation between environment and the quality of spatial coffeea. African Journal of Agricultural Research, 14(6), 354-360. DOI: 10.5897/AJAR2018.13633

Brighenti, D. M., Brighenti, C. R. G., Cirillo, M. A.,& Santos, C. M. B. (2010). Optimization of the components of an energetic diet for Africanized bees through the modeling of mixtures. Journal of Apicultural Research, 49(4), 326-333. DOI: 10.3896/IBRA.1.49.4.05

Dal Bello, L. H. A., & Vieira, A. F. C. (2011). Optimization of a product performance using mixture experiments including process variables. Journal of Applied Statistics, 38(8), 1701-1715. DOI: 10.1080/02664763.2010.518370

Ferreira, H. A., Liska, G. R., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., Cortez, R. M., & Guiraldeli, C. H. C. (2016). Selecting a probabilistic model applied to the sensory analysis of specialty coffees performed with consumer. IEEE Latin America Transactions, 14(3), 1507-1512. DOI: 10.1109/TLA.2016.7459642

Filho, L. T., Lucia, S. M. D., Saraiva, S. H., & Lima, R. M. (2015). Physical and chemical characteristics of espresso coffee beverages prepared from Arabica and Robusta coffee blends. Ceres, 62(4), 333-339. DOI: 10.1590/0034-737X201562040001

Lim, J. (2011). Hedonic scaling: a review of methods and theory. Food Quality and Preference, 22(8), 733-747. DOI: 10.1016/J.FOODQUAL.2011.05.008

Liska, G. R., Menezes, F. S., Cirillo, M. A., Borém, F. M., Cortez, R. M., & Ribeiro, D. E. (2015). Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis. Semina: Ciências Agrarias, 36(6), 3671-3680. DOI: 10.5433/1679-0359.2015v36n6p3671

Monteiro, M. C., & Trugo, L. C. (2005). Determination of bioactive compounds in commercial samples of roasted coffee. Quimica Nova, 28(1), 637-641. DOI: 10.1590/S0100-40422005000400016

Moura, S. C. S. R., Germer, S. P. M., Anjos, V. D. A., Mori, E. E. M., Mattoso, L. H. C., Firmino, A., & Nascimento, C. J. F. (2007). Physical, chemical and sensorial evaluations of Arabica coffee blends with Canephora (Robusta) coffee blends. Brazilian Journal Food Technology, 10(4), 271-277.

Nepomucena, T. M., Silva, A. M., & Cirillo, M. A. (2013). Modelos ridge em planejamento de misturas: uma aplicação na extração da polpa de pequi. Química Nova, 36(1), 159-164. DOI: 10.1590/S0100-40422013000100026

Ossani, P. C., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., & Cortez, R. M. (2017). Quality of specialty coffees: a sensorial evaluation conducted with consumers using the MFACT technique. Revista Ciência Agronômica, 48(1), 92-100. DOI: 10.5935/1806-6690.20170010

Ramos, M. F., Ribeiro, D. E., Cirillo, M. A., & Borém, F. M. (2016). Discrimination of the sensory quality of the Coffea arabica L. (cv. Yellow Bourbon) produced in different altitudes using decision trees obtained by the CHAID method. Journal of the Science of Food and Agriculture, 96(10), 3543-3551. DOI: 10.1002/jsfa.7539

Resende, M., Guimaraes, C. R., & Cirillo, M. A. (2017). Procedure to identify outliers through cumulative distribution of extremes in a gamma response model. Communications in Statistics - Simulation and Computation, 46(9), 6937-6946. DOI: 10.1080/03610918.2016.1217015

Ribeiro, B. B., Mendonça, L. M. V. L., Assis, G. A., Mendonça, J. M. A., Malta, M. R., & Montanari, F. F. (2014). Chemical and sensory evaluation of blends of Coffea canephora Pierre and Coffea arabica L. Coffee Science, 29(2), 178-186.

Veloso, M. V. S., & Cirillo, M. A. (2016). Principal components in the discrimination of outliers: A study in simulation sample data corrected by Pearson's and Yates´s chi-square distance. Acta Scientiarum. Technology, 38(2), 193-200. DOI: 10.4025/actascitechnol.v38i2.26046

Publicado
2019-05-24
Como Citar
Cirillo, M. Ângelo, Ramos, M. F., Borém, F. M., Miranda, F. M. de, Ribeiro, D. E., & Menezes, F. S. de. (2019). Statistical procedure for the composition of a sensory panel of blends of coffee with different qualities using the distribution of the extremes of the highest scores. Acta Scientiarum. Agronomy, 41(1), e39323. https://doi.org/10.4025/actasciagron.v41i1.39323
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus