Statistical procedure for the composition of a sensory panel of blends of coffee with different qualities using the distribution of the extremes of the highest scores
Abstract
The identification and interpretation of discrepant observations in sensory experiments are difficult to implement since the external effects are associated with the individual consumer. This fact becomes more relevant in experiments that involve blends, which scrutinize coffees with different qualities, varieties, origins, and forms of processing and preparation. This work proposes a statistical procedure that facilitates the identification of outliers while also evaluating the discriminatory powers of a sensory panel concerning the differentiation of pure blends and coffees. For this purpose, four experiments were performed that tested coffees with different qualities and varieties. The results suggest that the statistical procedure proposed in this work was effective for discriminating the blends relative to the pure coffees and that the effects of the concentrations and types of processing did not interfere with the statistical evaluations.
Downloads
References
Alessandrini, L., Romani, S., Pinnavaia, G., & Rosa, M. D. (2008). Near infrared spectroscopy: an analytical to tool predicted coffee roasting degree. Analytica Chemical Acta, 625(1), 95-102. DOI: 10.1016/j.aca.2008.07.013
Alves, G. E., Borém, F. M., Isquierdo, E. P., Siqueira, V. C., Cirillo, M. A., & Pinto, A. C. F. (2017). Physiological and sensorial quality of arabica coffee subject to different temperatures and drying airflows. Acta Scientiarum. Agronomy, 39(2), 225-233. DOI: 10.4025/actasciagron.v39i2.31065
Barbosa, J. M., Borém, F. M., Alves, H. M. R., Cirillo, M. A., & Maguas, C. (2019). Isotopic signature of the relation between environment and the quality of spatial coffeea. African Journal of Agricultural Research, 14(6), 354-360. DOI: 10.5897/AJAR2018.13633
Brighenti, D. M., Brighenti, C. R. G., Cirillo, M. A.,& Santos, C. M. B. (2010). Optimization of the components of an energetic diet for Africanized bees through the modeling of mixtures. Journal of Apicultural Research, 49(4), 326-333. DOI: 10.3896/IBRA.1.49.4.05
Dal Bello, L. H. A., & Vieira, A. F. C. (2011). Optimization of a product performance using mixture experiments including process variables. Journal of Applied Statistics, 38(8), 1701-1715. DOI: 10.1080/02664763.2010.518370
Ferreira, H. A., Liska, G. R., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., Cortez, R. M., & Guiraldeli, C. H. C. (2016). Selecting a probabilistic model applied to the sensory analysis of specialty coffees performed with consumer. IEEE Latin America Transactions, 14(3), 1507-1512. DOI: 10.1109/TLA.2016.7459642
Filho, L. T., Lucia, S. M. D., Saraiva, S. H., & Lima, R. M. (2015). Physical and chemical characteristics of espresso coffee beverages prepared from Arabica and Robusta coffee blends. Ceres, 62(4), 333-339. DOI: 10.1590/0034-737X201562040001
Lim, J. (2011). Hedonic scaling: a review of methods and theory. Food Quality and Preference, 22(8), 733-747. DOI: 10.1016/J.FOODQUAL.2011.05.008
Liska, G. R., Menezes, F. S., Cirillo, M. A., Borém, F. M., Cortez, R. M., & Ribeiro, D. E. (2015). Evaluation of sensory panels of consumers of specialty coffee beverages using the boosting method in discriminant analysis. Semina: Ciências Agrarias, 36(6), 3671-3680. DOI: 10.5433/1679-0359.2015v36n6p3671
Monteiro, M. C., & Trugo, L. C. (2005). Determination of bioactive compounds in commercial samples of roasted coffee. Quimica Nova, 28(1), 637-641. DOI: 10.1590/S0100-40422005000400016
Moura, S. C. S. R., Germer, S. P. M., Anjos, V. D. A., Mori, E. E. M., Mattoso, L. H. C., Firmino, A., & Nascimento, C. J. F. (2007). Physical, chemical and sensorial evaluations of Arabica coffee blends with Canephora (Robusta) coffee blends. Brazilian Journal Food Technology, 10(4), 271-277.
Nepomucena, T. M., Silva, A. M., & Cirillo, M. A. (2013). Modelos ridge em planejamento de misturas: uma aplicação na extração da polpa de pequi. Química Nova, 36(1), 159-164. DOI: 10.1590/S0100-40422013000100026
Ossani, P. C., Cirillo, M. A., Borém, F. M., Ribeiro, D. E., & Cortez, R. M. (2017). Quality of specialty coffees: a sensorial evaluation conducted with consumers using the MFACT technique. Revista Ciência Agronômica, 48(1), 92-100. DOI: 10.5935/1806-6690.20170010
Ramos, M. F., Ribeiro, D. E., Cirillo, M. A., & Borém, F. M. (2016). Discrimination of the sensory quality of the Coffea arabica L. (cv. Yellow Bourbon) produced in different altitudes using decision trees obtained by the CHAID method. Journal of the Science of Food and Agriculture, 96(10), 3543-3551. DOI: 10.1002/jsfa.7539
Resende, M., Guimaraes, C. R., & Cirillo, M. A. (2017). Procedure to identify outliers through cumulative distribution of extremes in a gamma response model. Communications in Statistics - Simulation and Computation, 46(9), 6937-6946. DOI: 10.1080/03610918.2016.1217015
Ribeiro, B. B., Mendonça, L. M. V. L., Assis, G. A., Mendonça, J. M. A., Malta, M. R., & Montanari, F. F. (2014). Chemical and sensory evaluation of blends of Coffea canephora Pierre and Coffea arabica L. Coffee Science, 29(2), 178-186.
Veloso, M. V. S., & Cirillo, M. A. (2016). Principal components in the discrimination of outliers: A study in simulation sample data corrected by Pearson's and Yates´s chi-square distance. Acta Scientiarum. Technology, 38(2), 193-200. DOI: 10.4025/actascitechnol.v38i2.26046
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.







































