<b>Cash balance management: A comparison between genetic algorithms and particle swarm optimization</b> - doi: 10.4025/actascitechnol.v34i4.12194

Autores

  • Marcelo Botelho da Costa Moraes Universidade de São Paulo
  • Marcelo Seido Nagano Universidade de São Paulo

DOI:

https://doi.org/10.4025/actascitechnol.v34i4.12194

Palavras-chave:

optimization, cash flow, evolutionary models

Resumo

This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcelo Botelho da Costa Moraes, Universidade de São Paulo

Bacharel em Ciências Contábeis pela FEA-RP/í™SP Mestre e Doutorando em Engenharia de Produção pela EESC/USP na área de Otimização em Finanças

Marcelo Seido Nagano, Universidade de São Paulo

Professor Doutor do Departamento de Engenharia de Produção da EESC/USP

Publicado

2012-05-31

Como Citar

Moraes, M. B. da C., & Nagano, M. S. (2012). <b>Cash balance management: A comparison between genetic algorithms and particle swarm optimization</b> - doi: 10.4025/actascitechnol.v34i4.12194. Acta Scientiarum. Technology, 34(4), 373–379. https://doi.org/10.4025/actascitechnol.v34i4.12194

Edição

Seção

Ciência da Computação