<b>On recognition of simple group <i>L<sub>2</sub></i>(<i>r</i>) by the number of Sylow subgroups

Autores

  • Alireza Khalili Asboei Farhangian University
  • Reza Mohammadyari Islamic Azad University, Buinzahra

DOI:

https://doi.org/10.4025/actascitechnol.v36i3.16471

Resumo

Let G be a finite group and n_{p}(G) be the number of Sylow <sub>p- subgroup of G. In this work it is proved if G is a centerless group and n_{p}(G)=n_{p}(L_{2}(r)), for every prime p in pi (G), where r is prime number, r^2 does not divide |G| and r is not Mersenne prime, then L_{2}(r)<=G<=Aut(L_{2}(r).

Downloads

Não há dados estatísticos.

Downloads

Publicado

2014-02-26

Como Citar

Khalili Asboei, A., & Mohammadyari, R. (2014). <b>On recognition of simple group <i>L<sub>2</sub></i>(<i>r</i>) by the number of Sylow subgroups. Acta Scientiarum. Technology, 36(3), 487–489. https://doi.org/10.4025/actascitechnol.v36i3.16471

Edição

Seção

Matemática

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

Artigos mais lidos pelo mesmo(s) autor(es)