Uma revisão de abordagens genético-difusas para descoberta de conhecimento em banco de dados
DOI:
https://doi.org/10.4025/actascitechnol.v22i0.3074Palavras-chave:
algoritmos genéticos, conjuntos difusos, descoberta de conhecimentoResumo
O processo geral de descoberta de conhecimento em banco de dados é composto por diversas etapas, destacando-se a de Mineração de Dados (MD). As principais tarefas de MD são associação, agrupamento e descoberta de regras de classificação. A tarefa de classificação pode ser realizada por algoritmos convencionais (e.g., estatísticos) ou por métodos de inteligência artificial (e.g., redes neurais, algoritmos evolucionários, etc.). Nesta pesquisa o interesse é revisar algumas abordagens que utilizam algoritmos genéticos (AG) em combinação com conjuntos difusos (CD) de forma híbrida para realizar busca em espaços grandes e complexos. Este artigo mostra diversas abordagens híbridas (AG+CD), desenvolvidas para descoberta de regras de classificação, disponíveis na literatura e indica a possibilidade de adaptação das mesmas na descoberta de conhecimento em banco de dados de Ciência e Tecnologia (C&T)Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
