Application of Markov chain on daily rainfall data in Paraíba-Brazil from 1995-2015
DOI:
https://doi.org/10.4025/actascitechnol.v41i1.37186Palavras-chave:
Markov chain, transition probability matrix, rainfall, Paraíba, Brazil.Resumo
This study analyzed the behavior of daily rainfall in the State of Paraíba using the data from five meteorological stations distributed across the mesoregions of this state. We used the three-state Markov Chain model, in which states are defined as dry, wet and rainy. We calculated transition probabilities among states, probabilities of equilibrium of states, and expected lengths of the defined states for all stations and seasons to investigate spatial/seasonal variability. Results showed that for the entire region and for all seasons, the probability of dry days is greater than the probability of rainy days; expected values of rainy spells are low, indicating that the rainfall regime in Paraíba is characterized by high rainfall intensity distributed over short rainy periods. The dry-dry transition probability presents the highest values for all seasons and stations, as well as the corresponding expected dry spell length, indicating that this region is subjected to prolonged dry periods. The transition probabilities that lead to dry condition are higher in the interior of the State, while probabilities that lead to rainy condition are higher in the coastal region as well as the probability of rainy days, which is greater in fall, during the rainy season.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.