Optical viscous quantum ferromagnetic phase for recursional normalized dsβ-thermal radiation

Autores

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.69494

Palavras-chave:

energy; lie group; involutecurves.

Resumo

In this paper, we obtain optical magnetical recursional microfluidics normalized  bilayered microbeam solidity. Then, we have Hydromagnetic recursional magnetical viscous ferromagnetic microfluidics normalized thermal  radiations. Also, we present magnetical viscous ferromagnetic phase of heat transport for nanofluid recursional microfluidics normalized thermal radiations. Finally, we design optical thermal magnetical viscous ferromagnetic conducting of  bilayered microbeams.

Downloads

Não há dados estatísticos.

Referências

Abdulkarim, Y. I., Mohanty, A., Acharya, O. P., Appasani, B., Khan, M. S., Mohapatra, S. K., Muhammadsharif, F. F., & Dong, J. (2022). A review on metamaterial absorbers: Microwave to optical. Frontiers in Physics, 10, 893791. https://doi.org/10.3389/fphy.2022.893791
Al-Khaled, K., Khan, S. U., & Khan, I. (2020). Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03117
Anjos, G. R. (2021). Moving mesh methods for two-phase flow systems: Assessment, comparison and analysis. Computers and Fluids, 228, 105053. https://doi.org/10.1016/j.compfluid.2021.105053
Azam, M. (2022). Effects of Cattaneo-Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy. Case Studies in Thermal Engineering, 34, 102048. https://doi.org/10.1016/j.csite.2022.102048
Borys, N. J., Argyropoulos, C., & Ye, L. (2022). Light and matter interactions: Recent advances in materials, theory, fabrication, and characterization. APL Materials, 10(6). https://doi.org/10.1063/5.0101819
Cheng, S., Xia, T., Liu, M., Xu, S., Gao, S., Zhang, G., & Tao, S. (2019). Optical manipulation of microparticles with the momentum flux transverse to the optical axis. Optics and Laser Technology, 113, 266-272. https://doi.org/10.1016/j.optlastec.2018.12.043
Copar, S., Ravnik, M., & Zumer, S. (2021). Introduction to colloidal and microfluidic nematic microstructures. Crystals, 11(8), 956. https://doi.org/10.3390/cryst11080956
Fani, M., Pourafshary, P., Mostaghimi, P., & Mosavat, N. (2022). Application of microfluidics in chemical enhanced oil recovery: A review. Fuel, 315, 123225. https://doi.org/10.1016/j.fuel.2022.123225
Fatunmbi, E. O., & Adeniyan, A. (2020). Nonlinear thermal radiation and entropy generation on steady flow of magneto-micropolar fluid passing a stretchable sheet with variable properties. Results in Engineering, 6, 100142. https://doi.org/10.1016/j.rineng.2020.100142
Kí¶rpinar, T., & Demirkol, R. C. (2022). On the geometric dynamics of the charged point-particle propagated through the spherical optical fiber. Optik, 251(1), 168287. https://doi.org/10.1016/j.ijleo.2021.168287
Kí¶rpinar, T., & Kí¶rpinar, Z. (2022a). Optical electromagnetic flux fibers with optical antiferromagnetic model. Optik, 251, 168301. https://doi.org/10.1016/j.ijleo.2021.168301
Kí¶rpinar, T., & Kí¶rpinar, Z. (2022b). Optical normalized microscale for optical total recursion electromagnetic flux on Heisenberg space SH 2. Optical and Quantum Electronics, 54(12), 777. https://doi.org/10.1007/s11082-022-04058-z
Kí¶rpinar, T., & Kí¶rpinar, Z. (2022c). Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster. Optical and Quantum Electronics, 54(12), 826. https://doi.org/10.1007/s11082-022-04169-7
Kí¶rpinar, T., & Kí¶rpinar, Z. (2022d). Optical modeling for electromagnetic Heisenberg ferromagnetic microscale in Heisenberg group. Waves in Random and Complex Media, 1-28. https://doi.org/10.1080/17455030.2022.2072538
Kí¶rpinar, T., Kí¶rpinar, Z., & Asi ̇l, V. (2022a). New optical Heisenberg model with timelike optical de Sitter flux density. Optik, 265, 169438. https://doi.org/10.1016/j.ijleo.2022.169438
Kí¶rpinar, Z., Kí¶rpinar, T., & Asi ̇l, V. (2022b). Optical electromagnetic antiferromagnetic flux with electroosmotic velocity in spherical Heisenberg group. Optik, 260, 168831. https://doi.org/10.1016/j.ijleo.2022.168831
Kí¶rpinar, T., & Kí¶rpinar, Z. (2023a). New modeling for Heisenberg velocity microfluidic of optical ferromagnetic mKdV flux. Optical and Quantum Electronics, 55(6), 523.
Kí¶rpinar, Z., & Kí¶rpinar, T. (2023b). New optical recursional spherical ferromagnetic flux for optical sonic microscale. Journal of Nonlinear Optical Physics and Materials, 2350051.
Kí¶rpinar, T., & Kí¶rpinar, Z. (2023c). Optical recursional binormal optical visco Landau--Lifshitz electromagnetic optical density. Communications in Theoretical Physics, 75(5), 055003. https://doi.org/10.1088/1572-9494/acc5de
Kí¶rpinar, T., & Kí¶rpinar, Z. (2023d). New approach for hybrid electromagnetic phase of hybrid optical fibers. Waves in Random and Complex Media, 1-29. https://doi.org/10.1080/17455030.2023.2226761
Kí¶rpinar, T., Kí¶rpinar, Z., Demi ̇rkol, R. C., & YeneroÄŸlu, M. (2021). Optical quasi flux density of Heisenberg ferromagnetic spin with qHATM approach. Optik, 245(9), 167567. https://doi.org/10.1016/j.ijleo.2021.167567
Kí¶rpinar, T., Kí¶rpinar, Z., & YeneroÄŸlu, M. (2022c). New optical total recursion for electromagnetic flux of optical fiber with optical microscale. Optik, 264, 169373. https://doi.org/10.1016/j.ijleo.2022.169373
Korpinar, Z., Inc, M., & Korpinar T. (2023). Ferromagnetic recursion for geometric phase timelike SN-magnetic fibers. Optical and Quantum Electronics, 55(4), 382. https://doi.org/10.1007/s11082-022-04539-1
Lapizco-Encinas, B. H. (2020). Microscale electrokinetic assessments of proteins employing insulating structures. Current Opinion in Chemical Engineering, 29, 9-16. https://doi.org/10.1016/j.coche.2020.02.007
Mahian, O., Kianifar, A., Sahin, A. Z., & Wongwises, S. (2014). Performance analysis of a minichannel-based solar collector using different nanofluids. Energy conversion and management, 88, 129-138. https://doi.org/10.1016/j.enconman.2014.08.021
Mohammed, H. A., Bhaskaran, G., Shuaib, N. H., & Saidur, R. (2011). Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renewable and Sustainable Energy Reviews, 15(3), 1502-1512. https://doi.org/10.1016/j.rser.2010.11.031
Muhammad, T., Waqas, H., Farooq, U., & Alqarni, M. S. (2021). Numerical simulation for melting heat transport in nanofluids due to quadratic stretching plate with nonlinear thermal radiation. Case Studies in Thermal Engineering, 27, 101300. https://doi.org/10.1016/j.csite.2021.101300
Prakash, S., & Yeom, J. (2014). Nanofluidics and microfluidics: systems and applications. William Andrew.
Rabiee, N., Ahmadi, S., Fatahi, Y., Rabiee, M., Bagherzadeh, M., Dinarvand, R., Bagheri, B., Zarrintaj, P., Saeb, M. R., & Webster, T. J. (2020). Nanotechnology-assisted microfluidic systems: From bench to bedside. Nanomedicine, 16(3), 237-258. https://doi.org/10.2217/nnm-2020-0353
Raupov, I., Burkhanov, R., Lutfullin, A., Maksyutin, A., Lebedev, A., & Safiullina, E. (2022). Experience in the application of hydrocarbon optical studies in oil field development. Energies, 15(10), 3626. https://doi.org/10.3390/en15103626
Saffarian, M. R., Moravej, M., & Doranehgard, M. H. (2020). Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renewable Energy, 146, 2316-2329. https://doi.org/10.1016/j.renene.2019.08.081
Salman, B. H., Mohammed, H. A., Munisamy, K. M., & Kherbeet, A. S. (2013). Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review. Renewable and Sustainable Energy Reviews, 28, 848-880. https://doi.org/10.1016/j.rser.2013.08.012
Sheikholeslami, M., & Ganji, D. (2014). Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia Iranica, 21(1), 203-212.
Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2014). Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technology, 254, 82-93. https://doi.org/10.1016/j.powtec.2013.12.054
Singh, S., Karchani, A., Chourushi, T., & Myong, R. S. (2022). A three-dimensional modal discontinuous Galerkin method for the second-order Boltzmann-Curtiss-based constitutive model of rarefied and microscale gas flows. Journal of Computational Physics, 457, 111052. https://doi.org/10.1016/j.jcp.2022.111052
Su, P., Ren, C., Fu, Y., Guo, J., & Yuan, Q. (2021). Magnetophoresis in microfluidic lab: Recent advance. Sensors and Actuators A: Physical, 332(5), 113180. https://doi.org/10.1016/j.sna.2021.113180
Ting, T. W., Hung, Y. M., & Guo, N. (2014). Effects of streamwise conduction on thermal performance of nanofluid flow in microchannel heat sinks. Energy conversion and management, 78, 14-23. https://doi.org/10.1016/j.enconman.2013.10.061
Wang, X., Cheng, C., Wang, S., & Liu, S. (2009). Electroosmotic pumps and their applications in microfluidic systems. Microfluidics and nanofluidics, 6(2), 145-162. https://doi.org/10.1007/s10404-008-0399-9
Ying, Z. J. (2023). Scaling Relations and Topological Quadruple Points in Light-Matter Interactions with Anisotropy and Nonlinear Stark Coupling. Advanced Quantum Technologies, 6(1), 2200068. https://doi.org/10.1002/qute.202370011
Zevnik, J., & Dular, M. (2020). Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrasonics Sonochemistry, 69, 105252. https://doi.org/10.1016/j.ultsonch.2020.105252
Zhang, X., Wang, J., & Wan, D. (2020). An improved multi-scale two phase method for bubbly flows. International Journal of Multiphase Flow, 133(1), 103460. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103460
Zhao, Z., Lan, D., Zhang, L., & Wu, H. (2022). A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Advanced Functional Materials, 32(15), 2111045. https://doi.org/10.1002/adfm.202111045

Downloads

Publicado

2025-03-24

Como Citar

Kí¶rpınar, T., & Kí¶rpınar, Z. . (2025). Optical viscous quantum ferromagnetic phase for recursional normalized dsβ-thermal radiation. Acta Scientiarum. Technology, 47(1), e69494. https://doi.org/10.4025/actascitechnol.v47i1.69494