Understanding of quasilinear hyperbolic systems through the investigation of their asymptotic solutions
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70124Palavras-chave:
asymptotics; differential equation; boundary conditions; quasilinear hyperbolic equations; Taylor series.Resumo
The main aim of the study is to deepen understanding of quasilinear hyperbolic systems through the investigation of their asymptotic solutions, with specific objectives related to theoretical analysis, wave dynamics characterization, and practical applications in physics and engineering. The methods of mathematical analysis employed include asymptotic analysis, Taylor series expansions, and the formulation of transfer equations. The paper considers systems of quasilinear hyperbolic equations in partial derivatives of the first order with two independent variables. The main results of the paper are: 1) high-frequency asymptotic solutions of small amplitude for quasilinear hyperbolic systems of the first order were obtained. For fixed values of t and , values of the modulus are limited by р→∞, because the transfer equations depend on p. Thus, the moduli of the decomposition coefficients are bounded at p→∞ and at fixed u and ; 2) It has been established that for ui0= const, , , independent of t, the solution of the equation is greatly simplified because the coefficient а0 is constant. For the linear function , is also constant. Practical applications of the results lie in fields such as fluid dynamics, wave propagation, and materials science, where understanding dispersion phenomena is crucial.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
