Determining Runoff Coefficient For Kalecik Basin by Using SMRGT
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.70976Palavras-chave:
Runoff coefficient, Fuzzy logic, SMRGT, Kalecik basınResumo
Precipitation causes runoff with significant uncertainty. The rainfall-runoff modeling relationship depends on the runoff coefficient. Many models have been developed with different methods to calculate the runoff coefficient. Black box or fuzzy models can be preferred instead of deterministic methods in uncertain natural events. However, black box methods often do not consider the event's physical aspect. Therefore, in the present study, Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT) which base on fuzzy logic was preferred in determining the runoff coefficient since it also reflects the physical cause-effect relationship of the event. By this way, both the hydrological event's uncertainty and physical aspects were addressed. Therefore, it can be used for any basin when the limit values of the variables are expanded. Correctly determining fuzzy sets and fuzzy rule bases are essential points to be considered in fuzzy modeling. According to the literature, SMRGT is the best one to use for this purpose. On the other hand, SMRGT is relatively new. Meteorological, geomorphological, and land use-related characteristics were considered for modeling. The Kalecik Basin's runoff coefficient is found as 0.28 which is lesser than the average of Turkey. The model has 2.28% of MARE.
Downloads
Referências
Alta?, E., Ayd?n, M. C., & Toprak, Z. F. (2018). Modeling water surface profile in open channel flows using Fuzzy SMRGT method. Dicle University Journal of Engineering (DUJE), 9(2), 975–981.
Cleveland, T. G., He, X., Asquith, W. H., & Fang, X. (2006). Instantaneous unit hydrograph evaluation for rainfall-runoff modeling of small watersheds in north and south central Texas. Journal of Irrigation and Drainage Engineering, 132(5), 479–485. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:5(479) DOI: https://doi.org/10.1061/(ASCE)0733-9437(2006)132:5(479)
Gunal, A. Y., & Mehdi, R. (2023). Forecasting the flow coefficient of the river basin using adaptive fuzzy inference system and fuzzy SMRGT method. Journal of Ecological Engineering, 24(7), 96–107. https://doi.org/10.12911/22998993/160331 DOI: https://doi.org/10.12911/22998993/163367
Karakaya, D., Toprak, Z. F. (2018). Classification Water Losses in Water Distribution Networks Using ZFT Algorithm. Su Kaynaklar?, 3(2), 22-30.
Kumar, P., Lohani, A. K., & Nema, A. K. (2017). Rainfall-runoff modeling using MIKE 11 NAM model. Current World Environment, 14(1), 27–34. https://doi.org/10.12944/CWE.14.1.04 DOI: https://doi.org/10.12944/CWE.14.1.05
Merz, R., Blöschl, G., & Parajka, J. (2006). Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 331(3–4), 591–604. https://doi.org/10.1016/j.jhydrol.2006.06.017 DOI: https://doi.org/10.1016/j.jhydrol.2006.06.008
Mimikou, M., & Rao, A. R. (1983). Regional monthly rainfall-runoff model. Journal of Water Resources Planning and Management, 109(1), 75–93. https://doi.org/10.1061/(ASCE)0733-9496(1983)109:1(75) DOI: https://doi.org/10.1061/(ASCE)0733-9496(1983)109:1(75)
Nayak, T., & Jaiswal, R. (2003). Rainfall-runoff modelling using satellite data and GIS for Bebas River in Madhya Pradesh. Journal of the Institution of Engineers, India. Civil Engineering Division, 84(Mai), 47–50.
O?uz, E. (1993). Natural regions and environs of Turkey. Aegean Geographical Journal, 7(1), 13–41.
Palta, ?., Yurtseven, ?., & Aksay, H. (2019). Rainfall-runoff interactions of Göksu River Basin. Journal of Bartin Faculty of Forestry, 21(3), 860–872. DOI: https://doi.org/10.24011/barofd.560701
Parida, B. P., Moalafhi, D. B., & Kenabatho, P. K. (2006). Forecasting runoff coefficients using ANN for water resources management: The case of Notwane catchment in Eastern Botswana. Physics and Chemistry of the Earth, Parts A/B/C, 31(15–16), 928–934. https://doi.org/10.1016/j.pce.2006.10.004 DOI: https://doi.org/10.1016/j.pce.2006.08.017
Savenije, H. H. G. (1996). The runoff coefficient as the key to moisture recycling. Journal of Hydrology, 176(1–4), 219–225. https://doi.org/10.1016/0022-1694(95)02763-3 DOI: https://doi.org/10.1016/0022-1694(95)02776-9
Sedki, A., Ouazar, D., & Mazoud, E. El. (2009). Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting. Expert Systems with Applications, 36(3), 4523–4527. https://doi.org/10.1016/j.eswa.2008.06.085 DOI: https://doi.org/10.1016/j.eswa.2008.05.024
Toprak, Z. F. (2009). Flow discharge modeling in open canals using a new fuzzy modeling technique (SMRGT). CLEAN–Soil, Air, Water, 37(9), 742–752. https://doi.org/10.1002/clen.200900027 DOI: https://doi.org/10.1002/clen.200900146
Toprak, Z. F. (2019). Bilimsel ara?t?rmalarda yöntem seçimi. In Proceedings of the 2nd International Congress on Engineering and Technology Management (pp. 1–7). Mardin, Turkey.
Toprak, Z. F., Songur, M., & Hamidi, N. (2013). Determination of losses in water-networks using a new fuzzy technique (SMRGT). Global Journal on Technology, 3(2013), 833–840. https://doi.org/10.18844/gjt.v3i2013.1220
Toprak, Z. F., Toprak, A., & Aykaç, Z. (2017). Practical applications of fuzzy SMRGT method. Dicle University Journal of Engineering (DUJE), 8(1), 123–132.
Tsykin, E. (1985). Multiple nonlinear statistical models for runoff simulation and prediction. Journal of Hydrology, 77(1–4), 209–226. https://doi.org/10.1016/0022-1694(85)90212-5 DOI: https://doi.org/10.1016/0022-1694(85)90207-0
Üne?, F., Demirci, M., Zelenakova, M., Çal???c?, M., & Ta?ar, B. (2020). River flow estimation using artificial intelligence and fuzzy techniques. Water, 12(9), 2427. https://doi.org/10.3390/w12092427 DOI: https://doi.org/10.3390/w12092427
Üstün, ?., Üne?, F., Mert, ?., & Karaku?, C. (2020). A comparative study of estimating solar radiation using machine learning approaches: DL, SMRGT, and ANFIS. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4), 10322–10345. https://doi.org/10.1080/15567036.2020.1825135 DOI: https://doi.org/10.1080/15567036.2020.1781301
Yalaz, S., & Arife, A. (2016). Fuzzy linear regression for the time series data which is fuzzified with SMRGT method. Süleyman Demirel University Journal of Natural and Applied Sciences, 20(3), 405–413. DOI: https://doi.org/10.19113/sdufbed.49849
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Fatih Sevgin, Z. Fuat TOPRAK (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
