A case study-the effects of waste heat recovery applications on energy consumption, cost, and greenhouse gas emissions in the wheels production process
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.71202Resumo
The aim of this article is to present the effect of waste heat recovery applications in a wheel heat treatment process on energy consumption, cost, and greenhouse gas emissions. Within the scope of the study, two energy recovery applications were made. Instead of the heat needed in the aging furnace, the waste heat in the solution furnace was recovered and used, in the other application, the waste heat was used to pre-heat the burner supply air. Thus, the results of deactivating the burner system to be used for the heating process in the aging section, as well as the savings achieved by this method and the reduction in unit product cost, were evaluated. Thanks to the savings made to reach the zero-carbon footprint target, the carbon footprint has been reduced. By using the waste heat in the aging furnace, 762.659 MJ hour-1 of energy was saved, and the return on investment was 482.8%. The amount of savings achieved by preheating the burner supply air was determined as 641.022 MJ hour-1. The return-on-investment value was realized as 1116.1%. Thanks to the natural gas savings, 538 tons of CO2 equivalent greenhouse gas emissions are prevented every year.
Downloads
Referências
Alcorta, L., Bazilian, M., De Simone, G., & Pedersen, A. (2014). Return on investment from industrial energy efficiency: Evidence from developing countries. Energy Efficiency, 7(1), 43–53. https://doi.org/10.1007/s12053-013-9198-6 DOI: https://doi.org/10.1007/s12053-013-9198-6
Bakhshi, R., & Sandborn, P. A. (2018). A return on investment model for the implementation of new technologies on wind turbines. IEEE Transactions on Sustainable Energy, 9(1), 284–292. https://doi.org/10.1109/TSTE.2017.2729505 DOI: https://doi.org/10.1109/TSTE.2017.2729505
Bonilla-Campos, I., Nieto, N., del Portillo-Valdes, L., Egilegor, B., Manzanedo, J., & Gaztañaga, H. (2019). Energy efficiency assessment: Process modelling and waste heat recovery analysis. Energy Conversion and Management, 196, 1180–1192. https://doi.org/10.1016/j.enconman.2019.06.074 DOI: https://doi.org/10.1016/j.enconman.2019.06.074
Brough, D., & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1–2, 100007. https://doi.org/10.1016/j.ijft.2019.100007 DOI: https://doi.org/10.1016/j.ijft.2019.100007
Brückner, S., Liu, S., Miró, L., Radspieler, M., Cabeza, L. F., & Lävemann, E. (2015). Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 151, 157–167. https://doi.org/10.1016/j.apenergy.2015.01.147 DOI: https://doi.org/10.1016/j.apenergy.2015.01.147
Chang, D.-S., Cheng, K.-P., & Wang, R. (2018). Developing low temperature recovery technology of waste heat in automobile factory. Energy Science & Engineering, 6(5), 460–474. https://doi.org/10.1002/ese3.220 DOI: https://doi.org/10.1002/ese3.220
Cullen, J. M., & Allwood, J. M. (2013). Mapping the global flow of aluminum: From liquid aluminum to end-use goods. Environmental Science & Technology, 47(7), 3057–3064. https://doi.org/10.1021/es304256s DOI: https://doi.org/10.1021/es304256s
Diesendorf, M., & Wiedmann, T. (2020). Implications of trends in energy return on energy invested (EROI) for transitioning to renewable electricity. Ecological Economics, 176, 106726. https://doi.org/10.1016/j.ecolecon.2020.106726 DOI: https://doi.org/10.1016/j.ecolecon.2020.106726
Egilegor, B., Jouhara, H., Zuazua, J., Al-Mansour, F., Plesnik, K., Montorsi, L., & Manzini, L. (2020). ETEKINA: Analysis of the potential for waste heat recovery in three sectors: Aluminium low pressure die casting, steel sector and ceramic tiles manufacturing sector. International Journal of Thermofluids, 1–2, 100002. https://doi.org/10.1016/j.ijft.2019.100002 DOI: https://doi.org/10.1016/j.ijft.2019.100002
European Commission. Joint Research Centre. (2018). Best available techniques (BAT) reference document for waste treatment: Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). Publications Office. https://data.europa.eu/doi/10.2760/407967
Haraldsson, J., & Johansson, M. T. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling. Renewable and Sustainable Energy Reviews, 93, 525–548. https://doi.org/10.1016/j.rser.2018.05.043 DOI: https://doi.org/10.1016/j.rser.2018.05.043
International Energy Agency [IEA]. (2021). Aluminium. https://www.iea.org/reports/aluminium
Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289. https://doi.org/10.1016/j.tsep.2018.04.017 DOI: https://doi.org/10.1016/j.tsep.2018.04.017
Kanoglu, M., & Cengel, Y. (2019). Energy efficiency and management for engineers. McGraw-Hill Education.
Kvande, H. (2015). Occurrence and production of aluminum. In R. A. Scott (Ed.), Encyclopedia of Inorganic and Bioinorganic Chemistry (pp. 1–10). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119951438.eibc2350 DOI: https://doi.org/10.1002/9781119951438.eibc2350
Ma, H., Yin, L., Shen, X., Lu, W., Sun, Y., Zhang, Y., & Deng, N. (2016). Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery. Applied Energy, 169, 177–186. https://doi.org/10.1016/j.apenergy.2016.02.012 DOI: https://doi.org/10.1016/j.apenergy.2016.02.012
Milford, R. L., Allwood, J. M., & Cullen, J. M. (2011). Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resources, Conservation and Recycling, 55(12), 1185–1195. https://doi.org/10.1016/j.resconrec.2011.05.021 DOI: https://doi.org/10.1016/j.resconrec.2011.05.021
Miró, L., Gasia, J., & Cabeza, L. F. (2016). Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 179, 284–301. https://doi.org/10.1016/j.apenergy.2016.06.147 DOI: https://doi.org/10.1016/j.apenergy.2016.06.147
Rakib, M. I., Saidur, R., Mohamad, E. N., & Afifi, A. M. (2017). Waste-heat utilization – The sustainable technologies to minimize energy consumption in Bangladesh textile sector. Journal of Cleaner Production, 142, 1867–1876. https://doi.org/10.1016/j.jclepro.2016.11.098 DOI: https://doi.org/10.1016/j.jclepro.2016.11.098
Rasmussen, J. (2017). The additional benefits of energy efficiency investments—A systematic literature review and a framework for categorisation. Energy Efficiency, 10(6), 1401–1418. https://doi.org/10.1007/s12053-017-9528-1 DOI: https://doi.org/10.1007/s12053-017-9528-1
Saghafifar, M., Omar, A., Mohammadi, K., Alashkar, A., & Gadalla, M. (2019). A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization. Energy Conversion and Management, 198, 110905. https://doi.org/10.1016/j.enconman.2018.10.047 DOI: https://doi.org/10.1016/j.enconman.2018.10.047
Scharf, S., Dischinger, N., Ates, B., Schlegel, U., Stein, N., & Stein, H. (2018). New plant-technologies for reducing carbon emissions and costs in heat treatment processes of aluminium castings. Procedia CIRP, 69, 283–287. https://doi.org/10.1016/j.procir.2017.11.140 DOI: https://doi.org/10.1016/j.procir.2017.11.140
Simsek, B., Simsek, E. H., & Altunok, T. (2013). Empirical and statistical modeling of heat loss from surface of a cement rotary kiln system. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 59–66.
Tabereaux, A. T., & Peterson, R. D. (2014). Aluminum production. In Treatise on Process Metallurgy (pp. 839–917). Elsevier. https://doi.org/10.1016/B978-0-08-096988-6.00023-7 DOI: https://doi.org/10.1016/B978-0-08-096988-6.00023-7
Terzi, Ü. K. (2011). Efficient and effective use of energy: A case study of TOFAS. Environmental Research, Engineering and Management, 55(1), 29–33.
Thekdi, A., Nimbalkar, S., Sundaramoorthy, S., Armstrong, K., Taylor, A., Gritton, J., Wenning, T., & Cresko, J. (2021). Technology assessment on low-temperature waste heat recovery in industry (ORNL/TM-2021/2150, 1819547). https://doi.org/10.2172/1819547 DOI: https://doi.org/10.2172/1819547
US Environmental Protection Agency. (2021). Emission factors for greenhouse gas inventories. https://www.epa.gov/sites/default/files/2015-07/documents/emission-factors_2014.pdf
Wang, X. Q., Li, X. P., Li, Y. R., & Wu, C. M. (2015). Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery. Energy, 88, 734–745. https://doi.org/10.1016/j.energy.2015.05.095 DOI: https://doi.org/10.1016/j.energy.2015.05.095
Zhang, Y., Sun, M., Hong, J., Han, X., He, J., Shi, W., & Li, X. (2016). Environmental footprint of aluminum production in China. Journal of Cleaner Production, 133, 1242–1251. https://doi.org/10.1016/j.jclepro.2016.04.137 DOI: https://doi.org/10.1016/j.jclepro.2016.04.137
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ça?r? Ozbür, Gokhan Gurlek (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
