A case study-the effects of waste heat recovery applications on energy consumption, cost, and greenhouse gas emissions in the wheels production process

Autores

  • Çagri Ozbür Ege University
  • Gokhan Gurlek Ege University

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.71202

Resumo

The aim of this article is to present the effect of waste heat recovery applications in a wheel heat treatment process on energy consumption, cost, and greenhouse gas emissions. Within the scope of the study, two energy recovery applications were made. Instead of the heat needed in the aging furnace, the waste heat in the solution furnace was recovered and used, in the other application, the waste heat was used to pre-heat the burner supply air. Thus, the results of deactivating the burner system to be used for the heating process in the aging section, as well as the savings achieved by this method and the reduction in unit product cost, were evaluated. Thanks to the savings made to reach the zero-carbon footprint target, the carbon footprint has been reduced. By using the waste heat in the aging furnace, 762.659 MJ hour-1 of energy was saved, and the return on investment was 482.8%. The amount of savings achieved by preheating the burner supply air was determined as 641.022 MJ hour-1. The return-on-investment value was realized as 1116.1%. Thanks to the natural gas savings, 538 tons of CO2 equivalent greenhouse gas emissions are prevented every year.

Downloads

Não há dados estatísticos.

Referências

Alcorta, L., Bazilian, M., De Simone, G., & Pedersen, A. (2014). Return on investment from industrial energy efficiency: Evidence from developing countries. Energy Efficiency, 7(1), 43–53. https://doi.org/10.1007/s12053-013-9198-6 DOI: https://doi.org/10.1007/s12053-013-9198-6

Bakhshi, R., & Sandborn, P. A. (2018). A return on investment model for the implementation of new technologies on wind turbines. IEEE Transactions on Sustainable Energy, 9(1), 284–292. https://doi.org/10.1109/TSTE.2017.2729505 DOI: https://doi.org/10.1109/TSTE.2017.2729505

Bonilla-Campos, I., Nieto, N., del Portillo-Valdes, L., Egilegor, B., Manzanedo, J., & Gaztañaga, H. (2019). Energy efficiency assessment: Process modelling and waste heat recovery analysis. Energy Conversion and Management, 196, 1180–1192. https://doi.org/10.1016/j.enconman.2019.06.074 DOI: https://doi.org/10.1016/j.enconman.2019.06.074

Brough, D., & Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1–2, 100007. https://doi.org/10.1016/j.ijft.2019.100007 DOI: https://doi.org/10.1016/j.ijft.2019.100007

Brückner, S., Liu, S., Miró, L., Radspieler, M., Cabeza, L. F., & Lävemann, E. (2015). Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy, 151, 157–167. https://doi.org/10.1016/j.apenergy.2015.01.147 DOI: https://doi.org/10.1016/j.apenergy.2015.01.147

Chang, D.-S., Cheng, K.-P., & Wang, R. (2018). Developing low temperature recovery technology of waste heat in automobile factory. Energy Science & Engineering, 6(5), 460–474. https://doi.org/10.1002/ese3.220 DOI: https://doi.org/10.1002/ese3.220

Cullen, J. M., & Allwood, J. M. (2013). Mapping the global flow of aluminum: From liquid aluminum to end-use goods. Environmental Science & Technology, 47(7), 3057–3064. https://doi.org/10.1021/es304256s DOI: https://doi.org/10.1021/es304256s

Diesendorf, M., & Wiedmann, T. (2020). Implications of trends in energy return on energy invested (EROI) for transitioning to renewable electricity. Ecological Economics, 176, 106726. https://doi.org/10.1016/j.ecolecon.2020.106726 DOI: https://doi.org/10.1016/j.ecolecon.2020.106726

Egilegor, B., Jouhara, H., Zuazua, J., Al-Mansour, F., Plesnik, K., Montorsi, L., & Manzini, L. (2020). ETEKINA: Analysis of the potential for waste heat recovery in three sectors: Aluminium low pressure die casting, steel sector and ceramic tiles manufacturing sector. International Journal of Thermofluids, 1–2, 100002. https://doi.org/10.1016/j.ijft.2019.100002 DOI: https://doi.org/10.1016/j.ijft.2019.100002

European Commission. Joint Research Centre. (2018). Best available techniques (BAT) reference document for waste treatment: Industrial Emissions Directive 2010/75/EU (integrated pollution prevention and control). Publications Office. https://data.europa.eu/doi/10.2760/407967

Haraldsson, J., & Johansson, M. T. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling. Renewable and Sustainable Energy Reviews, 93, 525–548. https://doi.org/10.1016/j.rser.2018.05.043 DOI: https://doi.org/10.1016/j.rser.2018.05.043

International Energy Agency [IEA]. (2021). Aluminium. https://www.iea.org/reports/aluminium

Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289. https://doi.org/10.1016/j.tsep.2018.04.017 DOI: https://doi.org/10.1016/j.tsep.2018.04.017

Kanoglu, M., & Cengel, Y. (2019). Energy efficiency and management for engineers. McGraw-Hill Education.

Kvande, H. (2015). Occurrence and production of aluminum. In R. A. Scott (Ed.), Encyclopedia of Inorganic and Bioinorganic Chemistry (pp. 1–10). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119951438.eibc2350 DOI: https://doi.org/10.1002/9781119951438.eibc2350

Ma, H., Yin, L., Shen, X., Lu, W., Sun, Y., Zhang, Y., & Deng, N. (2016). Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery. Applied Energy, 169, 177–186. https://doi.org/10.1016/j.apenergy.2016.02.012 DOI: https://doi.org/10.1016/j.apenergy.2016.02.012

Milford, R. L., Allwood, J. M., & Cullen, J. M. (2011). Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resources, Conservation and Recycling, 55(12), 1185–1195. https://doi.org/10.1016/j.resconrec.2011.05.021 DOI: https://doi.org/10.1016/j.resconrec.2011.05.021

Miró, L., Gasia, J., & Cabeza, L. F. (2016). Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 179, 284–301. https://doi.org/10.1016/j.apenergy.2016.06.147 DOI: https://doi.org/10.1016/j.apenergy.2016.06.147

Rakib, M. I., Saidur, R., Mohamad, E. N., & Afifi, A. M. (2017). Waste-heat utilization – The sustainable technologies to minimize energy consumption in Bangladesh textile sector. Journal of Cleaner Production, 142, 1867–1876. https://doi.org/10.1016/j.jclepro.2016.11.098 DOI: https://doi.org/10.1016/j.jclepro.2016.11.098

Rasmussen, J. (2017). The additional benefits of energy efficiency investments—A systematic literature review and a framework for categorisation. Energy Efficiency, 10(6), 1401–1418. https://doi.org/10.1007/s12053-017-9528-1 DOI: https://doi.org/10.1007/s12053-017-9528-1

Saghafifar, M., Omar, A., Mohammadi, K., Alashkar, A., & Gadalla, M. (2019). A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization. Energy Conversion and Management, 198, 110905. https://doi.org/10.1016/j.enconman.2018.10.047 DOI: https://doi.org/10.1016/j.enconman.2018.10.047

Scharf, S., Dischinger, N., Ates, B., Schlegel, U., Stein, N., & Stein, H. (2018). New plant-technologies for reducing carbon emissions and costs in heat treatment processes of aluminium castings. Procedia CIRP, 69, 283–287. https://doi.org/10.1016/j.procir.2017.11.140 DOI: https://doi.org/10.1016/j.procir.2017.11.140

Simsek, B., Simsek, E. H., & Altunok, T. (2013). Empirical and statistical modeling of heat loss from surface of a cement rotary kiln system. Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 59–66.

Tabereaux, A. T., & Peterson, R. D. (2014). Aluminum production. In Treatise on Process Metallurgy (pp. 839–917). Elsevier. https://doi.org/10.1016/B978-0-08-096988-6.00023-7 DOI: https://doi.org/10.1016/B978-0-08-096988-6.00023-7

Terzi, Ü. K. (2011). Efficient and effective use of energy: A case study of TOFAS. Environmental Research, Engineering and Management, 55(1), 29–33.

Thekdi, A., Nimbalkar, S., Sundaramoorthy, S., Armstrong, K., Taylor, A., Gritton, J., Wenning, T., & Cresko, J. (2021). Technology assessment on low-temperature waste heat recovery in industry (ORNL/TM-2021/2150, 1819547). https://doi.org/10.2172/1819547 DOI: https://doi.org/10.2172/1819547

US Environmental Protection Agency. (2021). Emission factors for greenhouse gas inventories. https://www.epa.gov/sites/default/files/2015-07/documents/emission-factors_2014.pdf

Wang, X. Q., Li, X. P., Li, Y. R., & Wu, C. M. (2015). Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery. Energy, 88, 734–745. https://doi.org/10.1016/j.energy.2015.05.095 DOI: https://doi.org/10.1016/j.energy.2015.05.095

Zhang, Y., Sun, M., Hong, J., Han, X., He, J., Shi, W., & Li, X. (2016). Environmental footprint of aluminum production in China. Journal of Cleaner Production, 133, 1242–1251. https://doi.org/10.1016/j.jclepro.2016.04.137 DOI: https://doi.org/10.1016/j.jclepro.2016.04.137

Downloads

Publicado

2025-06-17

Como Citar

Ozbür, Çagri, & Gurlek, G. . (2025). A case study-the effects of waste heat recovery applications on energy consumption, cost, and greenhouse gas emissions in the wheels production process. Acta Scientiarum. Technology, 47(1), e71202. https://doi.org/10.4025/actascitechnol.v47i1.71202

Edição

Seção

Informação Tecnológica

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus