Chlorella sp. inoculum doses affect ethinylestradiol removal in a wastewater treatment plant in the Peruvian Andes

Autores

  • Azucena Chavez Collantes Instituto Nacional de Innovación Agraria del Perú https://orcid.org/0000-0002-4782-1274
  • Richard Andi Solórzano Acosta Instituto Nacional de Innovación Agraria
  • Leslie Diana Velarde Apaza Instituto Nacional de Innovación Agraria
  • Joseph Campos Ruiz Instituto Nacional de Innovación Agraria
  • Edin Edgardo Alva Plasencia Universidad Nacional de Cajamarca
  • Eisner Will Castillo Rojas Universidad Nacional Autónoma de Chota

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.71212

Palavras-chave:

Microalgae, effluent bioremediation, synthetic estrogen

Resumo

The microalgae Chlorella sp. have demonstrated efficiency in the removal of pharmaceutical contaminants. However, there is no agreement on the inoculum dose since it depends on the contaminant concentration and other very specific parameters in each case. This study aims to evaluate the effect of Chlorella sp. inoculum doses on ethinylestradiol (EE) removal from wastewater treatment plant effluent in Celendín district of the province of Celendín, Cajamarca region, Peru. Four doses of inoculum (0, 100, 200, and 300 mL) were tested at a 2,1x106 cell?mL-1 microalgae cell concentration and 4 mg?L-1 of ethinylestradiol in photobioreactors. The final concentration of ethinylestradiol was determined after 20 days through High Performance Liquid Chromatography (HPLC). It was evidenced that a dose of 300 mL?L-1 of Chlorella sp. could remove 96,49% of ethinylestradiol from wastewater, unlike the other tested concentrations, which were below 80,92% removal. It was concluded that at a higher dose of Chlorella sp. inoculum, a higher ethinylestradiol removal percentage was observed in a wastewater sample from a treatment plant in the Peruvian Andes.

Downloads

Não há dados estatísticos.

Referências

Alcántara, Y. (2021). Development of a high-performance liquid chromatography analytical method for the quantification of ethinylestradiol and desogestrel tablets [Bachelor's Thesis, National University of Trujillo]. https://dspace.unitru.edu.pe/server/api/core/bitstreams/e8b3eddf-154a-4c04-931c-00d804dd21df/content.

Bano, F., Malik, A., & Ahammad, S. Z. (2021). Removal of estradiol, diclofenac, and triclosan by naturally occurring microalgal consortium obtained from wastewater. Sustainability, 13(14), 7690. https://doi.org/10.3390/su13147690 DOI: https://doi.org/10.3390/su13147690

Barrantes, K., Chacón, L., & Arias, M. (2022). El impacto de la resistencia a los antibióticos en el desarrollo sostenible. Población y salud en Mesoamérica, 19(2), 1–24. https://doi.org/10.15517/psm.v19i2.47590 DOI: https://doi.org/10.15517/psm.v19i2.47590

Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances in biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium – A review. Bioresource Technology, 344, 126159. https://doi.org/10.1016/j.biortech.2021.126159 DOI: https://doi.org/10.1016/j.biortech.2021.126159

Daniel, M. D. S., & De Lima, E. C. (2014). Determinação simultânea de estriol, ?-estradiol, 17?-etinilestradiol e estrona empregando-se extração em fase sólida (SPE) e cromatografia líquida de alta eficiência (HPLC). Ambiente e Água - An Interdisciplinary Journal of Applied Science, 9(4), 688–695. https://doi.org/10.4136/ambi-agua.1346 DOI: https://doi.org/10.4136/ambi-agua.1346

De Jesus, C. (2020). Wastewater treatment for the elimination of emerging micropollutants. DSpace. http://repository.usc.edu.co/handle/20.500.12421/4947

Durcik, M., Grobin, A., Roškar, R., & Trontelj, J. (2023). Estrogenic potency of endocrine disrupting chemicals and their mixtures detected in environmental water and wastewaters. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.138712 DOI: https://doi.org/10.2139/ssrn.4361195

García, M., Luna, G., Gallegos, M., Preciado, C., Cervantes, M., & Gonzáles, U. (2020). Impacto de aguas residuales sobre algunas propiedades y acumulación de metales pesados en el suelo. Terra Latinoamericana, 38(4), 907–916. https://doi.org/10.28940/terra.v38i4.556 DOI: https://doi.org/10.28940/terra.v38i4.556

Grdulska, A., & Kowalik, R. (2020). Pharmaceuticals in water and wastewater – overview. Environment, 12(2), 79–84. https://doi.org/10.30540/sae-2020-009 DOI: https://doi.org/10.30540/sae-2020-009

Hardegen, J., Amend, G., & Wichard, T. (2023). Lifecycle-dependent toxicity and removal of micropollutants in algal cultures of the green seaweed Ulva (Chlorophyta). Journal of Applied Phycology, 35(5), 2023–2048. https://doi.org/10.1007/s10811-023-02936-x DOI: https://doi.org/10.1007/s10811-023-02936-x

Hejna, M., Kapuscinska, D., & Aksmann, A. (2022). Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. International Journal of Environmental Research and Public Health, 19(13), 2–17. https://doi.org/10.3390/ijerph19137717 DOI: https://doi.org/10.3390/ijerph19137717

Hena, S., Gutierrez, L., & Croué, J. (2020). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403(1), 124–401. https://doi.org/10.1016/j.jhazmat.2020.124041 DOI: https://doi.org/10.1016/j.jhazmat.2020.124041

Hom, A., Jaén, A., Bello, I., Rodríguez, S., Vicent, S., Barceló, D., & Blánquez, P. (2021). Performance of a microalgal photobioreactor treating toilet wastewater: Pharmaceutically active compound removal and biomass harvesting. Science of the Total Environment, 592(1), 1–11. https://doi.org/10.1016/j.scitotenv.2017.02.224 DOI: https://doi.org/10.1016/j.scitotenv.2017.02.224

Huang, B., Tang, J., He, H., Gu, L., & Pan, X. (2019). Ecotoxicological effects and removal of 17?-estradiol in Chlorella algae. Ecotoxicology and Environmental Safety, 174, 377–383. https://doi.org/10.1016/j.ecoenv.2019.01.129 DOI: https://doi.org/10.1016/j.ecoenv.2019.01.129

Jun, C., Quing, Y., Ke, L., Jianzhong, L., & Junhu, Z. (2017). Removal of ethinyl estradiol from wastewater by mutating Chlorella PY-ZUI microalgae with CO2 fixation. Bioenvironmental Technology, 249(1), 284–289. https://doi.org/10.1016/j.biortech.2017.10.036 DOI: https://doi.org/10.1016/j.biortech.2017.10.036

Kasonga, T., Coetzee, M., Kamika, I., Ngole-Jeme, V., Ndombo, M., & Momba, B. (2020). Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. Journal of Environmental Management, 277(1), 111–485. https://doi.org/10.1016/j.jenvman.2020.111485 DOI: https://doi.org/10.1016/j.jenvman.2020.111485

Khalaji, M., Hosseini, S. A., Ghorbani, R., Agh, N., Rezaei, H., Kornaros, M., & Koutra, E. (2023). Treatment of dairy wastewater by microalgae Chlorella vulgaris for biofuels production. Biomass Conversion and Biorefinery, 13(4), 3259–3265. https://doi.org/10.1007/s13399-021-01287-2 DOI: https://doi.org/10.1007/s13399-021-01287-2

Khan, N., Ullah, S., Ahmed, S., Haq, I., Yousefi, M., Akbar, A., & Changani, F. (2020). Recent trends in disposal and treatment technologies of emerging-pollutants—A critical review. TrAC Trends in Analytical Chemistry, 122(1), 115–744. https://doi.org/10.1016/j.trac.2019.115744 DOI: https://doi.org/10.1016/j.trac.2019.115744

Khan, S., Thaher, M., Abdylquadir, M., Faisal, M., Mehariya, S., Najjar, M., Al-Jabri, H., & Das, P. (2023). Utilization of microalgae for urban wastewater treatment and valorization of treated wastewater and biomass for biofertilizer applications. Sustainability, 15(22), 1–18. https://doi.org/10.3390/su152216019 DOI: https://doi.org/10.3390/su152216019

Kumar, V., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B., & Kumar, A. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. Journal of Environmental Chemical Engineering, 9(1), 1–15. https://doi.org/10.1016/j.jece.2021.105966 DOI: https://doi.org/10.1016/j.jece.2021.105966

Li, C., Wei, Y., Zhang, S., & Tan, W. (2020). Advanced methods to analyze steroid estrogens in environmental samples. Environmental Chemistry Letters, 18(1), 543–559. https://doi.org/10.1007/s10311-019-00961-2 DOI: https://doi.org/10.1007/s10311-019-00961-2

Meneses, M. (2018). Sin control poblacional continuará el daño medio ambiental en México. Dirección General de Comunicación Social, Universidad Nacional Autónoma de México. https://www.dgcs.unam.mx/boletin/bdboletin/2018_204.html

Molinuevo, B., Riaño, B., Hernández, D., & García, M. (2019). Microalgae and wastewater treatment: Advantages and disadvantages. Springer Link, 35(5), 505–533. https://doi.org/10.1007/978-981-13-2264-8_20 DOI: https://doi.org/10.1007/978-981-13-2264-8_20

Pablo, Á., Kuan, S., Wayne, K., Chuan, T., Hsin, S., Chang, J., & Pau, S. (2021). Microalgae for biofuels, wastewater treatment, and environmental monitoring. Environmental Chemistry Letters, 19, 2891–2904. https://doi.org/10.1007/s10311-021-01219-6 DOI: https://doi.org/10.1007/s10311-021-01219-6

Parladé, E., Hom, A., Blánquez, P., Martínez, M., Vicent, T., & Gaju, N. (2018). Effect of cultivation conditions on ?-estradiol removal in laboratory and pilot-plant photobioreactors by an algal-bacterial consortium treating urban wastewater. Water Research, 137(1), 86–96. https://doi.org/10.1016/j.watres.2018.02.060 DOI: https://doi.org/10.1016/j.watres.2018.02.060

Plöhn, M., Sema, M., Escudero-Oñate, C., Ferrando, L., & Allahverdiyeva, Y. (2021). Wastewater treatment by microalgae. Wiley Online Library, 173(2), 568–758. https://doi.org/10.1111/ppl.13427 DOI: https://doi.org/10.1111/ppl.13427

Rodriguez, H., Gamez, A., De La Cruz, M., Rojas, S., Rodriguez, M., Gallozzo, M., & Cruz, J. (2022). Literature review: Evaluation of drug removal techniques in municipal and hospital wastewater. MDPI, 19(20), 15–24. https://doi.org/10.3390/ijerph192013105 DOI: https://doi.org/10.3390/ijerph192013105

Ruksrithong, C., & Phattarapattamawong, S. (2019). Removals of estrone and 17?-estradiol by microalgae cultivation: Kinetics and removal mechanisms. National Library of Medicine, 40(2), 163–170. https://doi.org/10.1080/09593330.2017.1384068 DOI: https://doi.org/10.1080/09593330.2017.1384068

Rzymski, P., Drewek, A., & Klimaszyk, P. (2017). Pharmaceutical pollution of the aquatic environment: An enormous and emerging challenge. MDPI, 17(2), 97–107. https://doi.org/10.1515/limre-2017-0010 DOI: https://doi.org/10.1515/limre-2017-0010

Spindola, C., Bassin, J., & Silva, R. (2018). Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environmental Pollution, 235, 546–559. https://doi.org/10.1016/j.envpol.2017.12.098 DOI: https://doi.org/10.1016/j.envpol.2017.12.098

Stephen, E., Zhou, X., Omondi, E., Ali, Q., Gathery, M., Shiraku, M., & Ling, W. (2022). Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. Chemosphere, 302(2), 1–12. https://doi.org/10.1016/j.chemosphere.2022.136370 DOI: https://doi.org/10.1016/j.chemosphere.2022.136370

SUNASS - Superintendencia Nacional de Servicios de Saneamiento. (2022). El tratamiento de aguas residuales en el Perú aumentó en 11% entre 2016 y el 2020. https://bitily.me/SkRHs

Tawfik, A., Eraky, M., Alhajeri, N., Osman, A., & Rooney, D. (2022). Cultivation of microalgae on liquid anaerobic digestate for depollution, biofuels and cosmetics: A review. Environmental Chemistry Letters, 20, 3621–3656. https://doi.org/10.1007/s10311-022-01481-2 DOI: https://doi.org/10.1007/s10311-022-01481-2

Varela, E., Florencia, P., Exequiel, R., Sáez, S., & Tereschuk, M. (2023). Biomass production of microalgae and scale-up design of high rate algal ponds for citrus industry effluent tertiary treatment, Tucumán, Argentina. Case Studies in Chemical and Environmental Engineering, 8(23), 1–8. https://doi.org/10.1016/j.cscee.2023.100403 DOI: https://doi.org/10.1016/j.cscee.2023.100403

Wang, Y., Sun, Q., Wang, H., Wu, K., & Yu, C. (2019). Biotransformación de estrona, 17?-estradiol y 17?-etinilestradiol por cuatro especies de microalgas. Ecotoxicología y seguridad ambiental, 180(1), 723–732. https://doi.org/10.1016/j.ecoenv.2019.05.061 DOI: https://doi.org/10.1016/j.ecoenv.2019.05.061

Xuelian, B., & Kumud, A. (2019). Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environmental Pollution, 247(1), 534–540. https://doi.org/10.1016/j.envpol.2019.01.075 DOI: https://doi.org/10.1016/j.envpol.2019.01.075

Yingxiao, M., Feng, Y., Lili, A., Wendi, S., Tingting, T., Zihao, L., & Ruihua, D. (2023). Transcriptome analysis of changes in M. aeruginosa growth and microcystin production under low concentrations of ethinylestradiol. Science of the Total Environment, 859(2), 1–18. https://doi.org/10.1016/j.scitotenv.2022.160226 DOI: https://doi.org/10.1016/j.scitotenv.2022.160226

Downloads

Publicado

2025-06-17

Como Citar

Chavez Collantes, A., Solórzano Acosta, R. A. ., Velarde Apaza, L. D. ., Campos Ruiz, J. ., Alva Plasencia, E. E. ., & Castillo Rojas, E. W. . (2025). Chlorella sp. inoculum doses affect ethinylestradiol removal in a wastewater treatment plant in the Peruvian Andes. Acta Scientiarum. Technology, 47(1), e71212. https://doi.org/10.4025/actascitechnol.v47i1.71212

Edição

Seção

Biotecnologia

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus