Numerical Analysis of the Thermal Influence of Conduction and Contact Thermal Resistance in Multi-Layered Cutting Tool
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.71286Palavras-chave:
Cutting Tool, Heat Transfer, COMSOL®, Coating, Contact ResistanceResumo
During the turning process, the cutting tool heats up during use, potentially reaching temperatures above 900ºC. When these temperature levels are reached, the cutting tool loses its mechanical properties and wears out prematurely. To address this issue, a solution was found in coating the cutting tool with a thin layer of thermally insulating material. The purpose of this work was to numerically simulate the heating phenomenon in the transient regime of a tool and tool holder set while considering the presence of the coating, as well as to evaluate heat exchange by conduction. Another factor considered in this work was the presence of contact resistance between the tool and the tool holder, which, according to some studies, impacts the temperature field of the cutting tool. Some parameters related to contact resistance were taken into account to make the model closer to real situations. Simulations were carried out using the COMSOL® program to solve the transient three-dimensional heat diffusion equation using the Finite Element Method. Subsequently, the temperatures found for the uncoated cutting tool were compared to the temperatures found for the cutting tool coated with Titanium Nitride (TiN), Aluminum Oxide (Al2O3), and Titanium Carbide (TiC).
Downloads
Referências
Borelli, J. E., França, C. A., Medeiros, C. F., & Gonzaga, A. (2001). Análise da temperatura na região de contato entre a peça e a ferramenta. Revista Máquinas e Metais, 114–125.
Brito, R. F., Carvalho, S. R., Lima e Silva, S. M. M., & Ferreira, J. R. (2009). Thermal analysis in coated cutting tools. International Communications in Heat and Mass Transfer, 36(4), 314–321. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.004
Carvalho, S. R., Lima e Silva, S. M. M., Machado, A. R., & Guimarães, G. (2006). Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder. Journal of Materials Processing Technology, 179, 97–104. https://doi.org/10.1016/j.jmatprotec.2006.05.014
Corrêa Ribeiro, C. A., Ferreira, J. R., & Lima e Silva, S. M. M. (2022). Thermal influence analysis of coatings and contact resistance in turning cutting tool using COMSOL. The International Journal of Advanced Manufacturing Technology, 118(1-2), 275-289. https://doi.org/10.1007/s00170-021-07835-4
Ferreira, D. C., Magalhães, E. S., Brito, R. F., & Lima e Silva, S. M. M. (2018). Numerical analysis of the influence of coatings on a cutting tool using COMSOL. International Journal of Advanced Manufacturing Technology, 97(1–4), 1305–1314. https://doi.org/10.1007/s00170-018-2017-6
Ghani, J. A., Che Haron, C. H., Kasim, M. S., Sulaiman, M. A., & Tomadi, S. H. (2016). Wear mechanism of coated and uncoated carbide cutting tool in machining process. Journal of Materials Research, 31(13), 1873–1879. https://doi.org/10.1557/jmr.2016.204
Grzesik, W. (2006). Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. International Journal of Machine Tools and Manufacture, 46, 651–658. https://doi.org/10.1016/j.ijmachtools.2005.08.004
Grzesik, W., Nieslony, P., & Bartoszuk, M. (2009). Modeling of the cutting process: Analytical and simulation methods. Advances in Manufacturing Science and Technology, 33, 5–29.
Hao, G., & Liu, Z. (2019). Experimental study on the formation of TCR and thermal behavior of hard machining using TiAlN coated tools. International Journal of Heat and Mass Transfer, 140, 1–11. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.019
Hunt, J. L., & Santhanam, A. T. (1990). Coated carbide metal cutting tools: Development and applications. In The Winter Annual Meeting of The American Society of Mechanical Engineers (Vol. 25–30, pp. 139–155).
Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. (2011). Fundamentals of heat and mass transfer (7th ed.). John Wiley & Sons.
Jiang, F., Zhang, T., & Yan, L. (2016). Estimation of temperature-dependent heat transfer coefficients in near-dry cutting. International Journal of Advanced Manufacturing Technology, 86, 1207–1218. https://doi.org/10.1007/s00170-015-8213-1
Jin, D., Jingjie, Z., & Liguo, W. (2018). Heat partition and rake face temperature in the machining of H13 steel with coated cutting tools. International Journal of Advanced Manufacturing Technology, 94(9–12), 3691–3702. https://doi.org/10.1007/s00170-017-1158-y
Kusiak, A., Battaglia, J. L., & Rech, J. (2005). Tool coatings’ influence on the heat transfer in the tool during machining. Surface and Coatings Technology, 195, 29–40. https://doi.org/10.1016/j.surfcoat.2004.06.036
Marusich, T. D., Brand, C. J., & Thiele, J. D. (2002). A methodology for simulation of chip breakage in turning processes using an orthogonal finite element model. In Proceedings of the Fifth CIRP International Workshop on Modeling of Machining Operation (Vol. 5, pp. 139–148).
Mathieu, G., Frédéric, V., Vincent, R., & Eric, F. (2015). 3D stationary simulation of a turning operation with an eulerian approach. Applied Thermal Engineering, 76, 134–146. https://doi.org/10.1016/j.applthermaleng.2014.11.049
Mondelin, A., Valiorgue, F., Feulvarch, E., Rech, J., & Coret, M. (2013). Calibration of the insert/tool holder thermal contact resistance in stationary 3D turning. Applied Thermal Engineering, 55(1–2), 17–25. https://doi.org/10.1016/j.applthermaleng.2013.02.019
Norouzifard, V., & Hamedi, M. (2014). Experimental determination of the tool-chip thermal contact conductance in machining process. International Journal of Machine Tools and Manufacture, 84, 45–57. https://doi.org/10.1016/j.ijmachtools.2014.04.006
Paula, M. A., Ribeiro, M. V., Souza, J. V. C., & Kondo, M. Y. (2019). Analysis of the performance of coated carbide cutting tools in the machining of martensitic stainless steel AISI 410 in dry and MQL conditions. Materials Research Express, 6, 1–12. https://doi.org/10.1088/2053-1591/ab32a3
Polozine, A., & Schaeffer, L. (2005). Exact and approximate methods for determining the thermal parameters of the forging process. Journal of Materials Processing Technology, 170, 611–615. https://doi.org/10.1016/j.jmatprotec.2005.06.017
Song, W., Wang, Z., Deng, J., Zhou, K., Wang, S., & Guo, Z. (2017). Cutting temperature analysis and experiment of Ti–MoS2/Zr-coated cemented carbide tool. International Journal of Advanced Manufacturing Technology, 93(1–4), 799–809. https://doi.org/10.1007/s00170-017-0532-y
Tönshoff, H. K., Arendt, C., & Ben Anor, R. (2000). Cutting of hardened steel. CIRP Annals, 49(2), 547–566. https://doi.org/10.1016/S0007-8506(07)63455-7
Wang, Y. M., Tian, H., Shen, X. E., Wen, L., Ouyang, J. H., Zhou, Y., Jia, D. C., & Guo, L. X. (2013). An elevated temperature infrared emissivity ceramic coating formed on 2024 aluminum alloy by microarc oxidation. Ceramics International, 39, 2869–2875. https://doi.org/10.1016/j.ceramint.2012.09.068
Xian, Y., Zhang, P., Zhai, S., Yuan, P., & Yang, D. (2018). Experimental characterization methods for thermal contact resistance: A review. Applied Thermal Engineering, 130, 1530–1548. https://doi.org/10.1016/j.applthermaleng.2017.11.091
Yen, Y. C., Jain, A., & Altan, T. (2004). A finite element analysis of orthogonal machining using different tool edge geometries. Journal of Materials Processing Technology, 146(1), 72–81. https://doi.org/10.1016/j.jmatprotec.2003.09.020
Yuste, M., Galindo, R. E., Sánchez, O., Cano, D., Casasola, R., & Albella, J. M. (2010). Correlation between structure and optical properties in low emissivity coatings for solar thermal collectors. Thin Solid Films, 518, 5720–5723. https://doi.org/10.1016/j.tsf.2010.04.035
Zhang, J., & Liu, Z. (2017). Transient and steady-state temperature distribution in monolayer-coated carbide cutting tool. International Journal of Advanced Manufacturing Technology, 91(1–4), 59–67. https://doi.org/10.1007/s00170-016-9748-8
Zhang, J., Liu, Z., & Du, J. (2017). Prediction of cutting temperature distributions on rake face of coated cutting tools. International Journal of Advanced Manufacturing Technology, 91(1–4), 49–57. https://doi.org/10.1007/s00170-016-9749-7
Zhang, J., Meng, X., Du, J., Xiao, G., Chen, Z., Yi, M., & Xu, C. (2021). Modelling and prediction of cutting temperature in the machining of H13 hard steel of transient heat conduction. Materials, 14(12), 3176. https://doi.org/10.3390/ma14123176
Zhang, J., Zhang, G., & Fan, G. (2022). Effects of tool coating materials and coating thickness on cutting temperature distribution with coated tools. International Journal of Applied Ceramic Technology, 19(4), 2276–2284. https://doi.org/10.1111/ijac.13854
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Rogério Fernandes Brito, Ricardo Luiz Perez Teixeira, Rafael Thomaz de Camargo Rodrigues, José Carlos de Lacerda, Tarcísio Gonçalves de Brito, Paulo Mohallem Guimarães, Henrique Marcio Pereira Rosa, Júlio César Costa Campos (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.