Majority Voting-Based Tumor Detection: Brain Tumor Detection on X-Ray and MRI Images Using Fusion of Hybrid Learning Methods
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.71395Palavras-chave:
Brain Tumor Detection, Medical Imaging, MRI, X-Ray, Machine Learning, Deep Learning, Majority Voting.Resumo
Brain tumor is a crucial health problem that affects people’s lives and their life quality. The treatment of this disease varies according to the size, type, location, and condition of the tumor detected. Therefore, the treatment of this disease may vary from person to person. Early diagnosis of brain tumor in individuals is very important as it can change the course of treatment. The aim of this study is to provide a hybrid learning solution for early detection of brain tumors on Magnetic Resonance Imaging (MRI) and X-Ray scans. In this study, two separate datasets involving a total of 7600 MRI and X-Ray scans, available to users from Kaggle, were used. In the experimental part of this study, the 7600 MRI and X-Ray scans were trained and tested using a number of well-known learning models which are; XGBoost, Convolutional Neural Networks (CNN), ResNet50, DenseNet121 and AlexNet. After the experimental studies, the accuracy, sensitivity, specificity, precision, recall and F1-Score metrics of each of these models were obtained and compared. In addition, taking into account the results obtained from these models, a fusion approach named "Majority Voting" has been applied and the performance value of the system has been successfully increased. In summary, the performance results obtained from the used model are 98.98% for XGBoost, 99.75% for CNN, 99.65% for DenseNet121, 97.21% for ResNet50 and 99.84% for AlexNet. The accuracy after the “Majority Voting” approach applied is 100.00%. The results of the experimental studies demonstrate the promise of the proposed hybrid learning system with the Majority Voting approach and emphasizing its feasibility, effectiveness, and efficiency in processing both MRI and X-Ray tumor scanning techniques. Additionally, comparison with the state-of-the-art demonstrates that the proposed model outperforms the existing models for brain tumor detection.
Downloads
Referências
Aktas, K., Ignjatovic, V., Ilic, D., Marjanovic, M., & Anbarjafari, G. (2023). Deep convolutional neural networks for detection of abnormalities in chest X-rays trained on the very large dataset. Signal,1 Image and Video Processing, 17, 1035–1041. https://doi.org/10.1007/s11760-022-02482-1
Amin, J., Sharif, M., Yasmin, M., & Fernandes, S. L. (2020). A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 139, 118-127. https://doi.org/10.1016/j.patrec.2020.06.012
Anantharajan, S., Gunasekaran, S., Subramanian, T., & Venkatesh, R. (2024). MRI brain tumor detection using deep learning and machine learning approaches. Measurement: Sensors, 31(101026). https://doi.org/10.1016/j.measen.2023.101026
Babalola, F. O., Bitirim, Y., & Toygar, Ö. (2021). Palm vein recognition through fusion of texture-based and CNN-based methods. Signal, Image and Video Processing, 15(3), 459-466. https://doi.org/10.1007/s11760-020-01777-6
Çelik Ertu?rul, D. (2016). FoodWiki: a mobile app examines side effects of food additives via semantic web. Journal of Medical Systems, 40(2), 41. https://doi.org/10.1007/s10916-016-0428-1
Çelik Ertu?rul, D., & Celik Ulusoy, D. (2022). A knowledge?based self?pre?diagnosis system to predict Covid?19 in smartphone users using personal data and observed symptoms. Expert Systems, 39(3), e12716. https://doi.org/10.1111/exsy.12716
Çelik Ertu?rul, D., & Elçi, A. (2020). A survey on semanticized and personalized health recommender systems. Expert Systems, 37(4), e12519. https://doi.org/10.1111/exsy.125193
Çelik Ertugrul, D., & Ulusoy, A. H. (2019). Development of a knowledge?based medical expert system to infer supportive treatment suggestions for pediatric patients. ETRI Journal, 41(4), 515-527. https://doi.org/10.4218/etrij.2018-0287
Çelik Ertu?rul, D., Bitirim, Y., & Yakoub Anber, B. (2020). Decision Support System for Diagnosing Diabetic Retinopathy from Color Fundus Images. Journal of Imaging Science and Technology. https://doi.org/10.2352/jimagingsci.2020.64.2.020401
Çelik, D., Elçi, A., Akçiçek, R., Gökçe, B., & Hürcan, P. (2014, julho). A safety food consumption mobile system through semantic web technology. In 2014 IEEE 38th International Computer Software and Applications Conference Workshops (pp. 348-353).4 IEEE. https://doi.org/10.1109/COMPSACW.2014.59
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1251-1258). https://doi.org/10.1109/CVPR.2017.124
Cifci, M. A. (2022). Segchanet: A novel model for lung cancer segmentation in ct scans. Applied Bionics and Biomechanics, 2022. https://doi.org/10.1155/2022/6895311
Cifci, M. A., Hussain, S., & Canatalay, P. J. (2023). Hybrid Deep Learning Approach5 for Accurate Tumor Detection in Medical Imaging Data. Diagnostics, 13(6), 1025. https://doi.org/10.3390/diagnostics13061025
Cui, B., Chen, X., & Lu, Y. (2020). Semantic segmentation of remote sensing images6 using transfer learning and deep convolutional neural network with dense connection. IEEE Access, 8, 116744-116755. https://www.researchgate.net/figure/The-structure-of-DenseNet-121_fig2_342368106
Ertu?rul, D. Ç., & Abdullah, S. A. (2022). A decision-making tool for early detection of breast cancer on mammographic7 images. Tehni?ki Vjesnik, 29(5), 1528-1536. https://doi.org/10.17559/TV-20220303102353
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778). https://doi.org/10.1109/CVPR.2016.90
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In9 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4700-4708). https://doi.org/10.1109/CVPR.2017.243
Khan, M. M., Omee, A. S., Tazin, T., Almalki, F. A., Aljohani, M., & Algethami, H. (2022). A novel approach to predict brain cancerous tumor using transfer learning. Computational and Mathematical Methods in Medicine, 2022. https://doi.org/10.1155/2022/1070868
Kuraparthi, S., Reddy, M. K., Sujatha, C. N., Valiveti, H., Duggineni, C., Kollati, M., Kora, P., & V, S. (2021). Brain tumor classification of MRI images using deep convolutional neural network. International Information and Engineering Technology Association (IIETA), 38(4), 1171-1179. https://doi.org/10.18280/iie.380424
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3060410
Liu, Q., Zhang, N., Yang, W., Wang, S., Cui, Z., Chen, X., & Chen, L. (2017). A review of image recognition with deep convolutional neural network. In Intelligent Computing Theories and Application: 13th International Conference, ICIC 2017, Liverpool, UK, August 7-10, 2017, Proceedings, Part I 13 (pp. 69-80). Springer International Publishing. https://doi.org/10.1007/978-3-319-63307-5_8
Mikhailova, V., & Anbarjafari, G. (2022). Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning. Medical & Biological Engineering & Computing, 60, 2589–2600. https://doi.org/10.1007/s11517-022-02685-6
Mitchell, R., Adinets, A., Rao, T., & Frank, E. (2018). Xgboost: Scalable gpu accelerated learning. arXiv preprint arXiv:1806.11248.
Moirangthem, M., Singh, T. R., & Singh, T. T. (2021). Image classification and retrieval framework for brain tumour detection using CNN on ROI segmented MRI images. In 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT) (pp. 696-700). IEEE. https://doi.org/10.1109/ICEECCOT52177.2021.9696016
Molachan, N., Manoj, K. C., & Dhas, D. A. S. (2021). Brain Tumor Detection that uses CNN in MRI. In 2021 Asian Conference on Innovation in Technology (ASIANCON) (pp. 1-7). IEEE. https://doi.org/10.1109/ASIANCON53535.2021.9544927
Panigrahi, A. (2021). MRI Brain Tumor Dataset. Kaggle. https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri
Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks16 for image classification: A comprehensive review. Neural Computation, 29(9), 2352-2449. https://doi.org/10.1162/NECO_a_00990
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei,17 L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211-252. https://doi.org/10.1007/s11263-015-0816-y
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510-4520).18 https://doi.org/10.1109/CVPR.2018.00474
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the impact of residual connections on learning. In Proceedings of the AAAI21 Conference on Artificial Intelligence (Vol. 31, No. 1). https://doi.org/10.1609/aaai.v31i1.11239
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818-2826). https://doi.org/10.1109/CVPR.2016.308
Tazin, T., Sarker, S., Gupta, P., Ayaz, F. I., Islam, S., Monirujjaman Khan, M., Alroobaea, R., & Alshazly, H. (2021). A robust and novel approach for brain tumor classification using convolutional neural network. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/663806822
Ullah, N., Khan, J. A., Khan, M. S., Khan, W., Hassan, I., Obayya, M., Qamar, T., & Salama, A. S. (2022a). An effective approach to detect and identify brain tumors using transfer learning. Applied Sciences, 12(11), 5645. https://doi.org/10.3390/app12115645
Ullah, N., Khan, M. S., Khan, J. A., Choi, A., & Anwar, M. S. (2022b). A robust end-to-end deep learning-based approach for effective and reliable BTD using MR images. Sensors, 22(19), 7575. https://doi.org/10.3390/s22197575
Uyguro?lu, F., Toygar, Ö., & Demirel, H. (2024). CNN-based Alzheimer’s disease classification using fusion of multiple 3D angular orientations. Signal, Image and Video Processing, 18, 2743–2751. https://doi.org/10.1007/s11760-023-02685-z
Üzülmez, S., & Çifçi, M. A. (2024). Early diagnosis of lung cancer using deep learning and uncertainty measures. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(1), 385-400. https://doi.org/10.17341/gazimmfd.1215701
Viradiya, P. (2021). X-Ray Brain Tumor Dataset. Kaggle. https://www.kaggle.com/preetviradiya/brian-tumor-dataset
Wang, W., Chakraborty, G., & Chakraborty, B. (2020). Predicting the risk of chronic kidney disease (ckd) using machine learning algorithm. Applied Sciences, 11(1), 202. https://doi.org/10.3390/app11010202
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6848-6856). https://doi.org/10.1109/CVPR.2018.00715
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Duygu Çelik ErtuÄŸrul, Önsen Toygar , Hasan Karata? (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.