Use of natural extracts with antioxidant properties in biodiesel: optimization of extract formulation applying the simplex centroid method
DOI:
https://doi.org/10.4025/actascitechnol.v47i1.73074Palavras-chave:
Capsicum frutescens; Hylocereus costaricensis; Capsicum annuum; Transdescantia pallida purpurea; oxidation reaction; reaction rate.Resumo
Natural extracts with antioxidant properties can be used as sustainable alternatives compared to synthetic products, as they can inhibit the biodiesel oxidation reaction, resulting in increased oxidative stability, measured by the Rancimat method, and reducing the reaction rate, which is a key advantage in this study. This research evaluated the efficiency of ethanolic extracts from cayenne pepper leaves (Capsicum annuum), etna pepper leaves (Capsicum frutescens), red pitaya peels (Hylocereus costaricensis) and purple heart leaves (Transdescantia pallida purpurea) through the optimization of the biodiesel oxidation reaction rate at 110 °C using an experimental mixture design. All extracts showed antioxidant activity when compared to the control sample, reducing the reaction rate. However, the mixture containing extract of etna pepper leaves (Capsicum frutescens) and red pitaya peels (Hylocereus costaricensis) was the one that presented the lowest experimental value of k (0.1358 h-1). The optimization of the mathematical model indicated that the most effective mixture of antioxidant compounds for reducing the oxidation reaction consisted of 57.14% etna pepper extract (Capsicum frutescens) and 42.86% red pitaya peel extract (Hylocereus costaricensis), resulting in a reaction rate of 0.1396 h-1. The application of the t-test for a simple sample showed that there was no significant difference (p = 0.8777) between the optimized value and the average value experimentally obtained under optimal conditions (k = 0.1402), validating the predictive equation obtained. All ethanolic extracts used showed antioxidant activity and could be sustainable alternatives when compared to synthetic products.
Downloads
Referências
Akbarirad, H., Ardabili, A. G., Kazemeini, S. M., & Khaneghah, A. M. (2016). An overview on some of im-portant sources of natural antioxidants. International Food Research Journal, 23(3).
Artajo, L. S., Romero, M. P., Morelló, J. R., & Motilva, M. J. (2006). Enrichment of refined olive oil with phe-nolic compounds: Evaluation of their antioxidant activity and their effect on the bitter index. Journal of Agricultural and Food Chemistry, 54(16), 6079–6088.2 https://doi.org/10.1021/jf060874q
ASTM D93. (2020). Standard test methods for flash point by Pensky-Martens closed cup tester. ASTM Internation-al. www.astm.org
ASTM D445. (2021). Standard test method for kinematic viscosity of transparent and opaque liquids (and calcula-tion of dynamic viscosity). ASTM International. www.astm.org
ASTM D664. (2018). Standard test method for acid number of petroleum products by potentiometric titration. ASTM International. www.astm.org
ASTM D2500. (2017). Standard test method for cloud point of petroleum products and liquid fuels. ASTM Interna-tional. www.astm.org
ASTM D4052. (2018). Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM International. www.astm.org
ASTM D6304. (2020). Standard test method for determination of water in petroleum products, lubricating oils, and additives by Coulometric Karl Fischer titration. ASTM International. www.astm.org
Bouaid, A., Martinez, M., & Aracil, J. (2009). Production of biodiesel from bioethanol and Brassica carinata oil: Oxidation stability study. Bioresource Technology, 100(7), 2234–2239.
Brasil: Agência Nacional do Petróleo, Gás Natural e Biocombustíveis [ANP]. (2023). Resolução ANP Nº. 920, de 4 de abril de 2023. Diário Oficial da União. https://atosoficiais.com.br/anp/resolucao-n-920-2023-estabelece-a-especificacao-do-biodiesel-e-as-obrigacoes-quanto-ao-controle-da-qualidade-a-serem-atendidas-pelos-agentes-economicos-que-comercializem-o-produto-em-territorio-nacional?origin=instituicao
Branco, I. G., Campos, J. W., Silva, N. F., Clemente, M. A. J., Mantovani, A. C. G., Chendynski, L. T., & Borsa-to, D. (2024). Mathematical modeling of the biodiesel oxidation process in the presence of natural etha-nolic extracts of jabuticaba peels, gabiroba leaves, and hibiscus flowers. Química Nova, 47(1), e20230090. https://doi.org/10.21577/0100-4042.20230090
Canabarro, N. I., Silva-Ortiz, P., Nogueira, L. A. H., Cantarella, H., Maciel-Filho, R., & Souza, G. M. (2023). Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Gua-temala. Renewable and Sustainable Energy Reviews, 171, 113019. https://doi.org/10.1016/j.rser.2022.113019
Chellachamy, A., & Rajadurai, S. J. (2019). Evaluation of essential oils as antioxidant for biodiesel. Journal of Biobased Materials and Bioenergy, 13(3), 380–388. https://doi.org/10.1166/jbmb.2019.1858
Chendynski, L. T., Mantovani, A. C. G., Savada, F. Y., Messias, G. B., Santana, V. T., Salviato, A., Di Mauro, E., & Borsato, D. (2019). Analysis of the formation of radicals in biodiesel in contact with copper and me-tallic alloys via electronic paramagnetic resonance (EPR). Fuel, 242(15), 16–22. https://doi.org/10.1016/j.fuel.2019.01.058
Clemente, M. A. J., Branco, I. G., Romagnoli, E. S., Gonçales Filho, J., Mantovani, A. C. G., Chendynski, L. T., & Borsato, D. (2023c). Estimation of the storage time of biodiesel at room temperature in mixture with natural antioxidants and metallic ions: A semi-empirical study. Fuel, 353, 129276. https://doi.org/10.1016/j.fuel.2023.129276
Clemente, M. A. J., Marcheafave, G. G., Silva, H. H. P., Branco, I. G., Canesin, E. A., Mantovani, A. C. G., & Borsato, D. (2023a). Addition of jabuticaba peel extract with antioxidant properties in biodiesel. Fuel Pro-cessing Technology, 243, 107678. https://doi.org/10.1016/j.fuproc.2023.107678
Clemente, M. A., Marcheafave, G. G., Branco, I. G., Canesin, E. A., Mantovani, A. C. G., Chendynski, L. T., & Borsato, D. (2023b). Study of the addition of Gabiroba leaves extract in the biodiesel oxidation reaction in the presence of metal ions. Biofuels, 14(9), 951–956. https://doi.org/10.1080/17597269.2023.2191388
Conselho Nacional de Política Energética. (2023). Resolução CNPE nº 3/2023. Altera a Resolução CNPE nº 16, de 29 de outubro de 2018, que dispõe sobre a evolução da adição obrigatória de biodiesel ao óleo diesel vendido ao consumidor final, em qualquer parte do território nacional, e dá outras providências. CNPE
Cornell, J. (2002). Experiments with mixtures: Designs, models, and the analysis of mixture data (3rd ed.). John Wil-ey & Sons.4
Correia, I. A. S., Borsato, D., Savada, F. Y., Pauli, E. D., Mantovani, A. C. G., Cremasco, H., & Chendynski, L. T. (2020). Inhibition of the biodiesel oxidation by alcoholic extracts of green and black tea leaves and plum pulp: Application of the simplex-centroid design. Renewable Energy, 160, 288–296. https://doi.org/10.1016/j.renene.2020.06.118
Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables.6 Journal of Quality Technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968
Dueso, C., Muñoz, M., Moreno, F., Arroyo, J., Gil-Lalaguna, N., Bautista, A., & Sánchez, J. L. (2018). Perfor-mance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel, 234, 276–285. https://doi.org/10.1016/j.fuel.2018.07.013
EN 14103: Fat and oil derivatives, fatty acid methyl esters (FAME). Determination of ester and linolenic acid methyl ester contents. (2003). European Committee for Standardization. https://scioninstruments.com/determination-of-total-fame-and-linolenic-acid-methyl-esters-in-biodiesel/
EN 14111: Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of iodine value. (2003). Europe-an Committee for Standardization. https://www.en-standard.eu/bs-en-14111-2022-fat-and-oil-derivatives-fatty-acid-methyl-esters-fame-determination-of-iodine-value/
EN 14112: Fat and oil derivatives - Fatty acid methyl esters (FAME), Determination of oxidation stability (accelerat-ed oxidation test). (2020). European Committee for Standardization. https://www.en-standard.eu/bs-en-14112-2020-fat-and-oil-derivatives-fatty-acid-methyl-esters-fame-determination-of-oxidation-stability-accelerated-oxidation-test/
EN 14214: Liquid petroleum products. Fatty acid methyl esters (FAME) for use in diesel engines and heating applica-tions. Requirements and test methods. (2020). European Committee for Standardization. https://www.en-standard.eu/une-en-14214-2013-v2-a2-2019-liquid-petroleum-products-fatty-acid-methyl-esters-fame-for-use-in-diesel-engines-and-heating-applications-requirements-and-test-meth-ods/?gad_source=1&gbraid=0AAAAAD6CNv8MlHsLajBkFWvmZcZgTcWfk&gclid=CjwKCAjwzIK1BhAuEiwAHQmU3lrCYS5gd8Wb04_mvMpphdbbLYE4e49_o2C9PNHH4NtYJGrMvMtOQxoCHLYQAvD_BwE
Gregório, A. P. H., Borsato, D., Moreira, I., Silva, E. T., Romagnoli, É. S., & Spacino, K. R. (2019). Apparent activation energy and relative protection factor of natural antioxidants in mixture with biodiesel. Biofu-els, 607–614. https://doi.org/10.1080/17597269.2017.1332297
Joglekar, A. M., & May, A. T. (1987). Product excellence through design of experiments. Cereal Foods World, 32(12), 857.
Karavalakis, G., Stournas, S., & Karonis, D. (2010). Evaluation of the oxidation stability of diesel/biodiesel blends. Fuel, 89(9), 2483–2489. https://doi.org/10.1016/j.fuel.2010.03.041
Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328–2375. https://doi.org/10.3390/molecules18022328
Kim, W. R., Kim, E. O., Kang, K., Oidovsambuu, S., Jung, S. H., Kim, B. S., & Um, B. H. (2014). Antioxidant activity of phenolics in leaves of three red pepper (Capsicum annuum) cultivars. Journal of Agricultural and Food Chemistry, 62(4), 850–859. https://doi.org/10.1021/jf403006c
Ku, K. M., Kim, H. S., Kim, B. S., & Kang, Y. H. (2009). Antioxidant activities and antioxidant constituents of pepper leaves from various cultivars and correlation between antioxidant activities and antioxidant con-stituents. J Appl Biol Chem, 52(2), 70–76. https://doi.org/10.3839/jabc.2009.013
Kumazawa, S., Hamasaja, T., & Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chemistry, 84, 329–339. https://doi.org/10.1016/S0308-8146(03)00216-4
Mantovani, A. C. G., Chendynski, L. T., Santana, V. T., Borsato, D., & Di Mauro, E. (2021). Influence of anti-oxidants in biodiesel degradation: Electronic paramagnetic resonance tracking of free radicals. Fuel, 287(1), 1–8. https://doi.org/10.1016/j.fuel.2020.119531
Medeiros, M. L., Cordeiro, A. M., Queiroz, N., Soledade, L. E., Souza, A. L., & Souza, A. G. (2014). Efficient antioxidant formulations for use in biodiesel. Energy & Fuels, 28(2), 1074–1080. https://doi.org/10.1021/ef402009e
Mello, F. R. D., Bernardo, C., Dias, C. O., Gonzaga, L., Amante, E. R., Fett, R., & Candido, L. M. B. (2014). An-tioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Ciência Rural, 45, 323–328. https://doi.org/10.1590/0103-8478cr20140548
Nagarajan, J., & Narayanasamy, B. (2021). Effects of natural antioxidants on the oxidative stability of waste cooking oil biodiesel. Biofuels, 485–494. https://doi.org/10.1080/17597269.2019.1711320
Nambiraj, M., & Kumar, K. S. (2024). Exploring the role of natural antioxidant additives extracted from agro wastes in prolonging biodiesel's storage stability. Industrial Crops and Products, 212, 118321. https://doi.org/10.1016/j.indcrop.2024.118321
Nambo, A., Miralda, C. M., Jasinski, J. B., & Carreon, M. A. (2015). Methanolysis of olive oil for biodiesel syn-thesis over ZnO nanorods. Reaction Kinetics Mechanisms and Catalysis, 114, 583–595. https://doi.org/10.1007/s11144-014-0802-3
Olatunji, T. L., & Afolayan, A. J. (2019). Evaluation of genetic relationship among varieties of Capsicum annu-um L. and Capsicum frutescens L. in West Africa using ISSR markers. Heliyon, 5(5). https://doi.org/10.1016/j.heliyon.2019.e01700
Orives, J. R., Galvan, D., Coppo, R. L., Rodrigues, C. H. F., Angilelli, K. G., & Borsato, D. (2014). Multiresponse optimisation on biodiesel obtained through a ternary mixture of vegetable oil and animal fat: Simplex-centroid mixture design application.Energy Conversion and Management, 79, 398–404. https://doi.org/10.1016/j.enconman.2013.12.033
Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2
Rodionova, M. V., Poudyal, R. S., Tiwari, I., Voloshin, R. A., Zharmukhamedov, S. K., Nam, H. G., & Allakh-verdiev, S. I. (2017). Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy, 42(12), 8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.125
Romagnoli, É. S., Borsato, D., Silva, L. R. C., Chendynski, L. T., Angilelli, K. G., & Canesin, E. A. (2018). Kinet-ic parameters of the oxidation reaction of commercial biodiesel with natural antioxidant additives. Indus-trial Crops and Products, 125, 59–64. https://doi.org/10.1016/j.indcrop.2018.08.077
Sanchez, F., & Vasudevan, P. (2006). Enzime catalyzed production of biodiesel from olive oil. Applied Bio-chemistry and Biotechnology, 135, 1–14. https://doi.org/10.1385/abab:135:1:1
Shahzadi, I., Aziz Shah, S. M., Shah, M. M., Ismail, T., Fatima, N., Siddique, M., & Ayaz, A. (2022). Antioxi-dant, cytotoxic, and antimicrobial potential of silver nanoparticles synthesized using Tradescantia pallida extract. Frontiers in Bioengineering and Biotechnology, 10, 907551. https://doi.org/10.3389/fbioe.2022.907551
StatSoft Inc. (2018). Statistica for Windows (Version 13.0) [Computer software]. StatSoft. https://www.statsoft.com
Wu, L. C., Hsu, H. W., Chen, Y. C., Chiu, C. C., Lin, Y. I., & Ho, J. A. A. (2006). Antioxidant and antiprolifera-tive activities of red pitaya. Food Chemistry, 95(2), 319–327. https://doi.org/10.1016/j.foodchem.2005.01.002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Isadora Guilherme Branco, Nathan Ferreira Silva, Julia Weingrill Campos, Ana Carolina Gomes Mantovani, Leticia Chendynski, Dionisio Borsato (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.