Laccase and lignin peroxidase production and decolorization of xenobiotic dyes by species of Polyporaceae (Basidiomycota) from South America

Autores

Palavras-chave:

Bioremediation, Congo red, Crystal violet, Ligninolytic enzymes, RBBR

Resumo

Polyporaceae are known as wood decaying fungi with enzymatic production that plays an important role in environmental processes. Laccase (Lac) and lignin peroxidase (LiP) are two of the most explored enzymes and show significant industrial importance in degrading textile dyes, including Remazol Brilliant Blue R (RBBR), Crystal Violet (CV) and Congo Red (CR) that are some of the most commonly tested. Six strains representing six species of Hexagonia and Trametes (Polyporaceae) from South America were selected to evaluate Lac and LiP production and degradation of these dyes. The dataset of rDNA ITS confirmed the identity of the species, the amplification using LccF–LccR and Lip1–Lip2 primers detected Lac and LiP gene fragments in four and five strains, respectively, and the biostimulation essays of Lac and LiP showed the production of enzymes by all strains, being T. versicolor (VRTO 1064) and H. hydnoides (URM 9027) the best producers of Lac (117.839 U L-1) and LiP (109.370 U L-1), respectively. For RBBR, T. villosa (URM 8022) presented the best results (84.18 %). CR decolorization ranged from 61.37% to 68.74% by five strains, with lower results for T. lactinea (URM 8350) (19.9 %). Finally, T. sanguinea (URM 8774) had the best results for CV (85.06 %). Trametes lactinea (URM 8350), T. versicolor (VRTO 1064), and T. villosa (URM 8022) did not decolorize CV. Our results highlight the underexplored enzymatic potential of strains from South America and show that the strains here studied are promising alternatives to decolorize industrial textile dyes.

Downloads

Não há dados estatísticos.

Referências

Abrahão, M. C., Gugliotta, A. D. M., Silva, R., Fujieda, R. J. Y., Boscolo, M., & Gomes, E. (2008). Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation. Annals of Microbiology, 58, 427-432.

Ajao, A. T., Aborisade, W. T., Jimoh, F. A., & Abdulsalam, N. O. (2023). Exploitation of Laccase Producing Trametes versicolor (NBRC4937) for the Biodegradation of Triphenylmethanes (Crystal Violet) Dyes. FUOYE Journal of Pure and Applied Sciences (FJPAS), 8(2), 154-167. https://doi.org/10.55518/fjpas.CMDK4384

Alam, R., Ardiati, F. C., Solihat, N. N., Alam, M. B., Lee, S. H., Yanto, D. H. Y., Watanabe, T., & Kim, S. (2021). Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. Journal of Hazardous Materials, 405, 124176. https://doi.org/10.1016/j.jhazmat.2020.124176

Alexander, D. G. S., & Thatheyus, A. J. (2021). Fungal bioremediation of toxic textile dye effluents. In V. K. Sharma, S. Parmar, M. P. Shah, & A. Kumar (Eds.), Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology (pp. 353-380). Academic Press. https://doi.org/10.1016/B978-0-12-821925-6.00016-2

Anita, S. H., Ardiati, F. C., Oktaviani, M., Sari, F. P., Nurhayat, O. D., Ramadhan, K. P., & Yanto, D. H. Y. (2020). Immobilization of laccase from Trametes hirsuta EDN 082 in light expanded clay aggregate for decolorization of Remazol Brilliant Blue R dye. Bioresource Technology Reports, 12, 100602. https://doi.org/10.1016/j.biteb.2020.100602

Araújo, C. A. V., Contato, A. G., Aranha, G. M., Maciel, G. M., Haminiuk, C. W. I., Inácio, F. D., Rodrigues, J. H. S., Peralta, R. M., & Souza, C. G. M. (2020). Biodiscoloration, detoxification and biosorption of Reactive Blue 268 by Trametes sp. M3: a strategy for the treatment of textile effluents. Water, Air, & Soil Pollution, 231, 339. https://doi.org/10.1007/s11270-020-04723-7

Arumugam, D. P., & Uthandi, S. (2024). Optimization and characterization of laccase (LccH) produced by Hexagonia hirta MSF2 in solid-state fermentation using coir pith wastes (CPW). Journal of Environmental Management, 356, 120625. https://doi.org/10.1016/j.jenvman.2024.120625

Avelino, K. V., Halabura, M. I. W., Marim, R. A., Araújo, N. L., Nunes, M. G. I. F., Silva, D. L. G., Colauto, G. A. L., Colauto, N. B., & Valle, J. S. (2020). Coculture of white rot fungi enhance laccase activity and its dye decolorization capacity. Research, Society and Development, 9(11), e88191110643-e88191110643. https://doi.org/10.33448/rsd-v9i11.10643

Backes, E., Kato, C. G., de Oliveira Junior, V. A., Uber, T. M., dos Santos, L. F. O., Corrêa, R. C. G., Bracht, A., & Peralta, R. M. (2023). Overproduction of laccase by Trametes versicolor and Pycnoporus sanguineus in farnesol-pineapple waste solid fermentation. Fermentation, 9(2), 188. https://doi.org/10.3390/fermentation9020188

Bhattacharya, S., & Das, A. (2011). Mycoremediation of Congo red dye by filamentous fungi. Brazilian Journal of Microbiology, 42, 1526-1536. https://doi.org/10.1590/S1517-83822011000400040

Brazkova, M., Koleva, R., Angelova, G., & Yemendzhiev, H. (2022). Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. In BIO Web of Conferences (p. 02009). EDP Sciences. https://doi.org/10.1051/bioconf/20224502009

Buswell, J. A., Cai, Y., & Chang, S. T. (1995). Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiology Letters, 128(1), 81-87. https://doi.org/10.1111/j.1574-6968.1995.tb07504.x

Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., Yang, Z. L., & Dai, Y. C. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity, 97, 137-392. https://doi.org/10.1007/s13225-019-00427-4

Diorio, L. A., Fréchou, D. S., & Levin, L. N. (2021). Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system. Revista Argentina de Microbiología, 53(1), 3-10. https://doi.org/10.1016/j.ram.2020.04.007

Ferreira-Silva, V., Gusmão, N. B. D., Gibertoni, T. B., & Silva, L. A. D. O. D. (2022). Trametes lactinea and T. villosa collected in Brazil are able to discolor indigo carmine. Acta Botanica Brasilica, 36, e2021abb0356. https://doi.org/10.1590/0102-33062021abb0356

Fonseca, M. I., Zapata, P. D., Villalba, L. L., & Fariña, J. I. (2015). Characterization of the oxidative enzyme potential in wild white rot fungi from the subtropical forest of Misiones (Argentina). Acta Biològica Colombiana, 20(1), 47-56. http://dx.doi.org/10.15446/abc.v20n1.38322

Góes-Neto, A., Loguercio-Leite, C., & Guerrero, R. T. (2005). DNA extraction from frozen field collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas, 18(2), 19-32.

Hanafi, M. F., & Sapawe, N. (2020). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31, A141-A150. https://doi.org/10.1016/j.matpr.2021.01.258

Herath, I. S., Udayanga, D., Jayasanka, D. J., & Hewawasam, C. (2024). Textile dye decolorization by white rot fungi–A review. Bioresource Technology Reports, 24, 101687. https://doi.org/10.1016/j.biteb.2023.101687

Hibbett, D. S., & Donoghue, M. J. (1995). Progress toward a phylogenetic classification of the Polyporaceae through parsimony analysis of mitochondrial ribosomal DNA sequences. Canadian Journal of Botany, 73(S1), 853-861. https://doi.org/10.1139/b95-331

Kandasamy, S., Muniraj, I. K., Purushothaman, N., Sekar, A., Sharmila, D. J. S., Kumarasamy, R., & Uthandi, S. (2016). High level secretion of laccase (LccH) from a newly isolated white-rot basidiomycete, Hexagonia hirta MSF2. Frontiers in Microbiology, 7, 707. https://doi.org/10.3389/fmicb.2016.00707

Khan, R., Patel, V., & Khan, Z. (2020). Bioremediation of dyes from textile and dye manufacturing industry effluent. In Abatement of Environmental Pollutants (pp. 107-125). Elsevier. https://doi.org/10.1016/B978-0-12-818095-2.00005-9

Laksmi, F. A., Agustriana, E., Nuryana, I., Rachmayati, R., Perwitasari, U., Rumaisha, R., & Andriani, A. (2021). Removal of Textile Dye, RBBR, via Decolorization by Trametes hirsuta AA-017. Biosaintifika: Journal of Biology & Biology Education, 13(3), 319-327. https://doi.org/10.15294/biosaintifika.v13i3.31632

Laothanachareon, T., Kongtong, K., Saeng-Kla, K., Kanokratana, P., Leetanasaksakul, K., & Champreda, V. (2023). Evaluating the efficacy of wood decay fungi and synthetic fungal consortia for simultaneous decolorization of multiple textile dyes. World Journal of Microbiology and Biotechnology, 39(9), 226. https://doi.org/10.1007/s11274-023-03672-7

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290. https://doi.org/10.1016/j.biori.2019.09.001

Levin, L. N., Hernández-Luna, C. E., Niño-Medina, G., García-Rodríguez, J. P., López-Sadin, I., Méndez-Zamora, G., & Gutiérrez-Soto, G. (2019). Decolorization and detoxification of synthetic dyes by mexican strains of Trametes sp. International Journal of Environmental Research and Public Health, 16(23), 4610. https://doi.org/10.3390/ijerph16234610

Lima-Júnior, N. C., Baptista Gibertoni, T., & Malosso, E. (2014). Delimitation of some neotropical laccate Ganoderma (Ganodermataceae): molecular phylogeny and morphology. Revista de Biología Tropical, 62(3), 1197-1208.

Mahdy, S., & Suttinun, O. (2023). Decolorization of Remazol Brilliant Blue R by White-rot Fungus Trametes hirsuta AK04 Immobilized on Lignocellulosic Oil Palm Fibers. Applied Biochemistry and Microbiology, 59(6), 867-880. https://doi.org/10.1134/S0003683823060078

Mani, S., & Bharagava, R. N. (2016). Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Reviews of Environmental Contamination and Toxicology, 237, 71-104. https://doi.org/10.1007/978-3-319-23573-8_4

Martínez-Trujillo, M. A., Domínguez-Morales, D. M., & García-Rivero, M. (2024). Aeration regime modifies ligninolytic enzyme production and biodegradation of reactive black 5 by immobilized Trametes versicolor. International Journal of Environmental Science and Technology, 1-12. https://doi.org/10.1007/s13762-024-05502-1

Mirza, A., & Ahmad, R. (2020). An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: a novel and ecofriendly adsorbent. Groundwater for Sustainable Development, 11, 100373. https://doi.org/10.1016/j.gsd.2020.100373

Moldes, D., Fernandez-Fernandez, M., & Sanromán, M. A. (2012). Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization. The Scientific World Journal, 1, 398725. https://doi.org/10.1100/2012/398725

Moturi, B., & Charya, M. S. (2009). Decolourisation of crystal violet and malachite green by fungi. Science World Journal, 4(4). https://doi.org/10.4314/swj.v4i4.53585

Mounguengui, S., Attéké, C., Saha Tchinda, J. B., Ndikontar, M. K., Dumarcay, S., & Gérardin, P. (2013). Discoloration of dyes by Hexagonia apiaria fungus isolated in Gabon and screening of enzymes on solid culture medium. International Journal of Current Research, 5(12), 3886-3891.

Munagapati, V. S., Wen, H. Y., Wen, J. C., Gutha, Y., Tian, Z., Reddy, G. M., & Garcia, J. R. (2021). Anionic congo red dye removal from aqueous medium using Turkey tail (Trametes versicolor) fungal biomass: adsorption kinetics, isotherms, thermodynamics, reusability, and characterization. Journal of Dispersion Science and Technology, 42(12), 1785-1798. https://doi.org/10.1080/01932691.2020.1789468

Oktaviani, M., Damin, B. C. S., Suryanegara, L., Yanto, D. H. Y., & Watanabe, T. (2024). Immobilization of fungal mycelial and laccase from Trametes hirsuta EDN082 in alginate-cellulose beads and its use in Remazol Brilliant Blue R dye decolorization. Bioresource Technology Reports, 26, 101828. https://doi.org/10.1016/j.biteb.2024.101828

Oladoye, P. O., Bamigboye, M. O., Ogunbiyi, O. D., & Akano, M. T. (2022). Toxicity and decontamination strategies of Congo red dye. Groundwater for Sustainable Development, 19, 100844. https://doi.org/10.1016/j.gsd.2022.100844

Othman, A. M., Mechichi, T., Chowdhary, P., & Suleiman, W. B. (2023). Ligninolytic enzymes and their potential applications. Frontiers in Microbiology, 14, 1235206. https://doi.org/10.3389/fmicb.2023.1235206

Paredes, N. E. B, Santos-Neto, I. J., Oliveira, V. R. T., & Gusmão, N. B. (2022). Bioremediation potential of industrial laundry effluent by agaricomycetes from brazilian tropical dry forest. Research, Society and Development, 11(9), e23111931610. https://doi.org/10.33448/rsd-v11i9.31610

Rahimlou, S., Babaeizad, V., Bose, T., & Sayari, M. (2016). Determination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques. Mycologia Iranica, 3(1), 57-63. https://doi.org/10.22043/MI.2017.47179.1075

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180

Rosa, F. M., Mota, T. F. M., Busso, C., Arruda, P. V. D., Brito, P. E. M., Miranda, J. P. M., Trentin, A. B., & Cunha, M. A. A. D. (2024). Filamentous Fungi as Bioremediation Agents of Industrial Effluents: A Systematic Review. Fermentation, 10(3), 143. https://doi.org/10.3390/fermentation10030143

Ryvarden, L. (1991). Genera of polypores: Nomenclature and taxonomy (Vol. 5). Fungiflora.

Ryvarden, L. (2015). Neotropical polypores Part 2, Polyporaceae, Abortiporus–Nigroporus (Vol. 34). Fungiflora.

Ryvarden, L., & Johansen, I. (1980). A preliminary polypore flora of East Africa. Fungiflora.

Saha, R., & Mukhopadhyay, M. (2020). Elucidation of the decolorization of Congo Red by Trametes versicolor laccase in presence of ABTS through cyclic voltammetry. Enzyme and Microbial Technology, 135, 109507. https://doi.org/10.1016/j.enzmictec.2019.109507

Saini, S., & Sharma, K. K. (2021). Fungal lignocellulolytic enzymes and lignocellulose: a critical review on their contribution to multiproduct biorefinery and global biofuel research. International Journal of Biological Macromolecules, 193, 2304-2319. https://doi.org/10.1016/j.ijbiomac.2021.11.063

Si, J., & Cui, B. (2011). Application in dye decolorization and optimization of conditions in discoloration by Trametes orientalis. Genomics and Applied Biology, 30(3), 364-371.

Siddiqui, S. I., Allehyani, E. S., Al-Harbi, S. A., Hasan, Z., Abomuti, M. A., Rajor, H. K., & Oh, S. (2023). Investigation of Congo Red toxicity towards different living organisms: A review. Processes, 11(3), 807. https://doi.org/10.3390/pr11030807

Sousa, I. A. L., Boari, A. J., & Santos, A. S. (2024). Ligninolytic enzyme potential of Trametes spp. associated with leaf litter in riparian forest of the Amazônia region. Brazilian Journal of Biology, 84, e282099. https://doi.org/10.1590/1519-6984.282099

Souza-Junior, E. F., Santos, I. M., Souto, F., Calado, V., & Pereira Jr, N. (2022). Optimization and Implementation of fed-batch strategy to produce ligninolytic enzyme from the white-rot basidiomycete Pycnoporus sanguineus in bubble column reactor. Fermentation, 8(9), 418. https://doi.org/10.3390/fermentation8090418

Sudarshan, S., Harikrishnan, S., RathiBhuvaneswari, G., Alamelu, V., Aanand, S., Rajasekar, A., & Govarthanan, M. (2023). Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 134(2), lxac064. https://doi.org/10.1093/jambio/lxac064

Suryadi, H., Judono, J. J., Putri, M. R., Eclessia, A. D., Ulhaq, J. M., Agustina, D. N., & Sumiati, T. (2022). Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon, 8(2), e08865. https://doi.org/10.1016/j.heliyon.2022.e08865

Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal enzymes involved in plastics biodegradation. Microorganisms, 10(6), 1180. https://doi.org/10.3390/microorganisms10061180

Thampraphaphon, B., Phosri, C., Pisutpaisal, N., Thamvithayakorn, P., Chotelersak, K., Sarp, S., & Suwannasai, N. (2022). High potential decolourisation of textile dyes from wastewater by manganese peroxidase production of newly immobilised Trametes hirsuta PW17-41 and FTIR analysis. Microorganisms, 10(5), 992. https://doi.org/10.3390/microorganisms10050992

Tian, Y., Wu, K., Lin, S., Shi, M., Liu, Y., Su, X., & Islam, R. (2024). Biodegradation and Decolorization of Crystal Violet Dye by Cocultivation with Fungi and Bacteria. ACS Omega, 9(7). https://doi.org/10.1021/acsomega.3c06978

Tiwari, H., Sonwani, R. K., & Singh, R. S. (2023). Bioremediation of dyes: a brief review of bioreactor performance. Environmental Technology Reviews, 12(1), 83-128. https://doi.org/10.1080/21622515.2023.2184276

Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222

Tortella, G. R., Rubilar, O., Gianfreda, L., Valenzuela, E., & Diez, M. C. (2008). Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World Journal of Microbiology and Biotechnology, 24, 2805-2818. https://doi.org/10.1007/s11274-008-9810-7

Trifinopoulos, J., Nguyen, L. T., Von Haeseler, A., & Minh, B. Q. (2016). W-IQTREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232–W235. https://doi.org/10.1093/nar/gkw256

Uribe-Arizmendi, I., Anducho-Reyes, M. A., Ramírez-Vargas, M. R., Cadena-Ramírez, A., Muro-Urista, C. R., & Téllez-Jurado, A. (2020). Biological Decolorization of Amaranth, Denim Blue, and Orange G with Trametes polyzona. Water, Air, & Soil Pollution, 231, 1-14. https://doi.org/10.1007/s11270-020-04705-9

White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (Vol. 18, pp. 315-322). Academic Press.

Yadav, R. S. S., Patel, V. K., Yadav, K. D. S., Sharma, J. K., & Singh, N. P. (2010). Lignin peroxidases of some indigenous ligninolytic fungi: secretion and enzymatic characteristics. Indian Journal of Microbiology, 50, 132-138. https://doi.org/10.1007/s12088-010-0073-2

Yang, X. Q., Zhao, X. X., Liu, C. Y., Zheng, Y., & Qian, S. J. (2009). Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochemistry, 44(10), 1185-1189. https://doi.org/10.1016/j.procbio.2009.06.015

Zambrano-Forero, C. J., Dávila-Giraldo, L. R., Jaimes, L. O. B., Arteaga, J. J. M., Robledo, G. L., & Arango, W. M. (2021). The lignocellulolytic effect from newly wild white rot fungi isolated from Colombia. International Journal of Environment and Waste Management, 27(4), 440-454. https://doi.org/10.1504/IJEWM.2021.115379

Downloads

Publicado

2025-11-10

Como Citar

Oliveira, V. R. T. de, Wanderley, S. S. ., Santos, C., Gibertoni, T. B. ., & Alvarenga, R. L. M. . (2025). Laccase and lignin peroxidase production and decolorization of xenobiotic dyes by species of Polyporaceae (Basidiomycota) from South America. Acta Scientiarum. Technology, 48(1), e73470. Recuperado de https://periodicos.uem.br/actascitechnol/index.php/ActaSciTechnol/article/view/73470

Edição

Seção

Biotecnologia