Effect of Salt Ratios on Enterotoxin Production by Staphylococcus aureus in Fermented Sausage
Palavras-chave:
Enterotoxin; fermented sausage; salt; Staphylococcus aureus.Resumo
This study was carried out to determine the effect of salt application at different rates (1, 1,5, 2, and 2,5%) on the ability of S. aureus to produce enterotoxin in fermented sausage, one of the most produced meat products in Turkey. Five different reference strains of S. aureus known to have the ability to produce A-, B-, C-, D- and E-type toxin were inoculated into the experimentally produced sausage dough at 106 cfu g-1. Chemical analysis of sausage samples were performed. The identification of S. aureus was confirmed by cultural and molecular methods. ELISA was used to determine the ability to produce enterotoxin, and classical PCR and multiplex PCR were used to detect enterotoxin genes. According to the analysis results, the moisture, aw and pH values of the sausage samples were 38,80-61,48%; 0,883-0,901; 5,41-6,33, respectively. In production groups, S. aureus count was detected between 4,59-6,52 log cfu g-1 on day 0; 6,41-8,92 log cfu g-1 on day 7; 7,23-8,91 log cfu g-1 on day 14 and 6,13-8,82 log cfu g-1 on day 21. It was determined that bacterial counts reached the highest levels on the 7th day (after fermentation) in all groups (p < 0,05). Despite the logarithmic increase observed in S. aureus numbers in sausage samples, no toxin production could be detected. This situation can be explained by the lack of enviromental conditions required for enterotoxin production, the presence of competitive microflora, the fact of although the strains are enterotoxigenic, there is no expression-dependent production in the food matrix, and the fermentation conditions in sausage do not provide the neccessary environment for enterotoxin production. As a result, the high bacterial counts detected in sausage samples pose a potential risk to public health. Although salt levels have a limited effect on enterotoxin production, other factors, especially the hurdle factors in sausage, help prevent enterotoxin production. This makes fermented sausage an important food in terms of food safety. In addition to ensuring adequate hygiene for traditional Turkish type fermented sausage production, attention should be paid to incorporating practices such as Hazard Analysis Critical Control Point (HACCP) and Good Manufacturing Practices (GMPs) at every stage of the production process, i.e. from farm to table.
Downloads
Referências
Alibayov, B., Karamonova, L., Hollerova, R., Zdenkova, K., & Demnerova, K. (2015). Differences in transcription and expression of staphylococcal enterotoxin C in processed meat products. LWT-Food Science and Technology, 64(2), 578–585. https://doi.org/10.1016/j.lwt.2015.06.026
Akdeniz Oktay, B., & Özba?, Z. Y. (2020). The effects of fermented foods on human health. G?da, 45(6), 1215–1226. https://doi.org/10.15237/gida.GD20105
Alves, V. F., Nino-Arias, F. C., Pitondo-Silva, A., de Araújo Frazilio, D., de Oliveira Gonçalves, L., Toubas, L. C., & De Martinis, E. C. P. (2018). Molecular characterisation of Staphylococcus aureus from some artisanal Brazilian dairies. International Dairy Journal, 85, 247–253. https://doi.org/10.1016/j.idairyj.2018.06.008
Amini, R., Abdulamir, A. S., Ling, B. P., Jahanshiri, F., Hematian, A., Zargar, M., & Jalilian, F. A. (2011). Isolation and identification of methicillin-resistant Staphylococcus aureus from keys of college students using different detection methods. British Biotechnology Journal, 2(1), 13–25. https://doi.org/10.9734/BBJ/2012/756
Argaw, S., & Addis, M. (2015). A review on staphylococcal food poisoning. Food Science and Quality Management, 40, 59–72.
Argudín, M. Á., Mendoza, M. C., & Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2(7), 1751–1773. https://doi.org/10.3390/toxins2071751
Armutcu, Ü., Hazar, F. Y., Y?lmaz Oral, Z. F., Kaban, G., & Kaya, M. (2020). Effects of different internal temperature applications on quality properties of heat-treated sucuk during production. Journal of Food Processing and Preservation, 44(6), e14455.
Asgarpoor, D., Haghi, F., & Zeighami, H. (2018). Frequency of enterotoxin producing Staphylococcus aureus and toxin genes in raw and cooked meat samples. Infection, Epidemiology and Microbiology, 4, 53–58.
Atasever, M., Kele?, A., Güner, A., & Uçar, G. (1998). Konya'da tüketime sunulan fermente sucuklar?n baz? kalite nitelikleri. Eurasian Journal of Veterinary Sciences, 14(2), 27–32.
Attien, P., Sina, H., Moussaoui, W., Zimmermann-Meisse, G., Dadié, T., Keller, D., & Baba-Moussa, L. (2014). Mass spectrometry and multiplex antigen assays to assess microbial quality and toxin production of Staphylococcus aureus strains isolated from clinical and food samples. BioMed Research International, 2014. https://doi.org/10.1155/2014/485620
Bang, W., Hanson, D. J., & Drake, M. A. (2008). Effect of salt and sodium nitrite on growth and enterotoxin production of Staphylococcus aureus during the production of air-dried fresh pork sausage. Journal of Food Protection, 71(1), 191–195. https://doi.org/10.4315/0362-028X-71.1.191
Benli, H., ?ahin, P., & A?çam, E. (2024). Incorporating bay leaf extract (Laurus nobilis L.) and determining the quality attributes of Turkish fermented sausage (sucuk). Food Science & Nutrition, 12(4), 2473–2487. https://doi.org/10.1002/fsn3.3929
Bennett, R. W., & Lancette, G. A. (1998). Staphylococcus aureus. In FDA’s Bacteriological Analytical Manual (8th ed., Rev. A, Chap. 12).
Bulajic, S., Colovic, S., Misic, D., Djordjevic, J., Savic-Radovanovic, R., Asanin, J., & Ledina, T. (2017). Enterotoxin production and antimicrobial susceptibility in Staphylococci isolated from traditional raw milk cheeses in Serbia. Journal of Environmental Science and Health, Part B, 52(12), 864–870. https://doi.org/10.1080/03601234.2017.1361764
Campagnol, P. C. B., dos Santos, B. A., Wagner, R., Terra, N. N., & Pollonio, M. A. R. (2011). The effect of yeast extract addition on quality of fermented sausages at low NaCl content. Meat Science, 87(3), 290–298. https://doi.org/10.1016/j.meatsci.2010.11.005
Can, H. Y., Elmal?, M., & Karagöz, A. (2017). Molecular typing and antimicrobial susceptibility of Staphylococcus aureus strains isolated from raw milk, cheese, minced meat, and chicken meat samples. Korean Journal for Food Science of Animal Resources, 37(2), 175. https://doi.org/10.5851/kosfa.2017.37.2.175
Cretenet, M., Even, S., & Le Loir, Y. (2011). Unveiling Staphylococcus aureus enterotoxin production in dairy products: A review of recent advances to face new challenges. Dairy Science and Technology, 91, 127–150. https://doi.org/10.1007/s13594-011-0014-9
De Carvalho, C. C. P., Santos, V. A. Q., Gomes, R. G., & Hoffmann, F. L. (2017). Fermented sausage production using E. faecium as starter culture: Physicochemical and microbiological profile, sensorial acceptance and cellular viability. Acta Scientiarum. Technology, 39(4), 395–402. https://doi.org/10.4025/actascitechnol.v39i4.30882
Derzelle, S., Dilasser, F., Duquenne, M., & Deperrois, V. (2009). Differential temporal expression of the staphylococcal enterotoxins genes during cell growth. Food Microbiology, 26(8), 896–904. https://doi.org/10.1016/j.fm.2009.06.007
Eid, H., Mohamed, G., & El Borolos, I. (2018). Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from meat and meat products. Suez Canal Veterinary Medical Journal, 23(2), 59–79. https://doi.org/10.21608/scvmj.2018.60277
EL-Maghraby, M. S., Hassan, M. A., Hassanin, F. S., & Shawky, N. A. (2018). Detection of enterotoxigenic Staphylococcus aureus in meat product sandwiches using multiplex PCR. Benha Medical Journal, 35, 190–196. https://doi.org/10.21608/bvmj.2018.38362
Elshebrawy, H. A., Kasem, N. G., & Sallam, K. I. (2025). Methicillin- and vancomycin-resistant Staphylococcus aureus in chicken carcasses, ready-to-eat chicken meat sandwiches, and buffalo milk. International Journal of Food Microbiology, 427, 110968. https://doi.org/10.1016/j.ijfoodmicro.2024.110968
Even, S., Charlier, C., Nouaille, S., Zakour, N. L. B., Cretenet, M., Cousin, F. J., & Le Loir, Y. (2009). Staphylococcus aureus virulence expression is impaired by Lactococcus lactis in mixed cultures. Applied and Environmental Microbiology, 75, 4459–4472. https://doi.org/10.1128/AEM.02388-08
Fetsch, A., & Johler, S. (2018). Staphylococcus aureus as a foodborne pathogen. Current Clinical Microbiology Reports, 5, 88–96. https://doi.org/10.1007/s40588-018-0094-x
Fraqueza, M. J., & Patarata, L. (2020). Fermented meat products: From the technology to the quality control. In A. Sankaranarayanan, N. Amaresan, & D. Dhanasekaran (Eds.), Fermented food products (pp. 197–237). CRC Press.
Gajewska, J., Zakrzewski, A. J., Chaj?cka-Wierzchowska, W., & Zadernowska, A. (2023). Impact of the food-related stress conditions on the expression of enterotoxin genes among Staphylococcus aureus. Pathogens, 12(7), 954. https://doi.org/10.3390/pathogens12070954
Gebremedhin, E. Z., Ararso, A. B., Borana, B. M., Kelbesa, K. A., Tadese, N. D., Marami, L. M., & Sarba, E. J. (2022). Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta, Central Ethiopia. Veterinary Medicine International, 2022(1), 6544705. https://doi.org/10.1155/2022/6544705
Gencay, Y. E., Ayaz, N. D., & Do?ru, A. K. (2010). Enterotoxin gene profiles of Staphylococcus aureus and other Staphylococcal isolates from various foods and food ingredients. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 7(2), 75–80.
González-Fernández, C., Santos, E. M., Rovira, J., & Jaime, I. (2006). The effect of sugar concentration and starter culture on instrumental and sensory textural properties of chorizo-Spanish dry-cured sausage. Meat Science, 74(3), 467–475. https://doi.org/10.1016/j.meatsci.2006.04.019
Hu, Y., Zhang, L., Zhang, H., Wang, Y., Chen, Q., & Kong, B. (2020). Physicochemical properties and flavour profile of fermented dry sausages with a reduction of sodium chloride. LWT, 124, 109061. https://doi.org/10.1016/j.lwt.2020.109061
?nce, E., Özfiliz, N., & Efil, M. M. (2018). Ülkemizdeki süpermarketlerde sat??a sunulan sucuklarda kimyasal incelemeler. Uluda? Üniversitesi Veteriner Fakültesi Dergisi, 37(2), 127–131.
Johler, S., Weder, D., Bridy, C., Huguenin, M. C., Robert, L., Hummerjohann, J., & Stephan, R. (2015). Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. Journal of Dairy Science, 98(5), 2944–2948. https://doi.org/10.3168/jds.2014-9123
Johnson, W. M., Tyler, S. D., Ewan, E. P., Ashton, F. E., Pollard, D. R., & Rozee, K. R. (1991). Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. Journal of Clinical Microbiology, 29(3), 426–430. https://doi.org/10.1128/jcm.29.3.426-430.1991
Kaban, G., & Kaya, M. (2006). Effect of starter culture on growth of Staphyloccoccus aureus in sucuk. Food Control, 17, 797–801. https://doi.org/10.1016/j.foodcont.2005.05.003
Kaban, G., Y?lmaz Oral, Z. F., & Kaya, M. (2022). Sucuk. In J. M. Lorenzo, R. Domínguez, M. Pateiro, & P. E. Munekata (Eds.), Production of traditional Mediterranean meat products (pp. 133–141). Springer.
Kamilo?lu, A., Kaban, G., & Kaya, M. (2019). Effects of autochthonous Lactobacillus plantarum strains on Listeria monocytogenes in sucuk during ripening. Journal of Food Safety, 39(3), e12618. https://doi.org/10.1111/jfs.12618
Kang, D. H., & Fung, D. Y. C. (2000). Stimulation of starter culture for further reduction of foodborne pathogens during salami fermentation. Journal of Food Protection, 63(11), 1492–1495. https://doi.org/10.4315/0362-028X-63.11.1492
Kateete, D. P., Kimani, C. N., Katabazi, F. A., Okeng, A., Okee, M. S., Nanteza, A., & Najjuka, F. C. (2010). Identification of Staphylococcus aureus: DNase and mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials, 9(1), 1–7. https://doi.org/10.1186/1476-0711-9-23
Kaya, M., & Kaban, G. (2013). Fermente et ürünleri. In N. Aran (Ed.), G?da biyoteknolojisi (pp. 157–195). Nobel Akademik Yay?nc?l?k.
Keskin, T., & Uçar, G. (2023). Sucuk, salam, sosis ve past?rmalarda Salmonella spp. e Listeria monocytogenes varl??? ile kimyasal kriterlerinin belirlenmesi. In K. ?rak (Ed.), Sa?l?k perspektifleri: Güncel yakla??mLar ve multidisipliner stratejiler (pp. 37–90). ?ksad Publishing House.
Keyvan, E., & Özdemir, H. (2016). Occurrence, enterotoxigenic properties and antimicrobial resistance of Staphylococcus aureus on beef carcasses. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 63(1), 17–23. https://doi.org/10.1501/Vetfak_0000002703
Koluman, A., Unlu, T., Dikici, A., Tezel, A., Akcelik E. N., & Burkan, Z. T. (2011). Presence of Staphylococcus aureus and staphylococcal enterotoxins in different foods. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(1), S55–S60. https://doi.org/10.9775/kvfd.2010.3233
Konuray, G., & Erginkaya, Z. (2020). Traditional fermented food products of Turkey. In A. Sankaranarayanan, N. Amaresan, & D. Dhanasekaran (Eds.), Fermented food products (pp. 55–65). CRC Press.
Kumar, P., Chatli, M. K., Verma, A. K., Mehta, N., Malav, O. P., Kumar, D., & Sharma, N. (2017). Quality, functionality, and shelf life of fermented meat and meat products: A review. Critical Reviews in Food Science and Nutrition, 57(13), 2844–2856. https://doi.org/10.1080/10408398.2015.1074533
Landgraf, M., & Destro, M. T. (2013). Staphylococcal food poisoning. In J. G. Jr Morris, & M. Potter (Eds.), Foodborne infections and intoxications (4th ed., pp. 389–400). Academic Press.
Li, Q., Qin, D., Zhu, J., Yang, X., Lu, Z., Ye, S., & Wen, K. (2024). Development and validation of an ELISA kit for the detection of Staphylococcus aureus enterotoxin A, B, C1, C2, C3, D, E from food samples. Food Control, 166, 110630. https://doi.org/10.1016/j.foodcont.2024.110630
Lorenzo, J. M., Gómez, M., & Fonseca, S. (2014). Effect of commercial starter cultures on physicochemical characteristics, microbial counts and free fatty acid composition of dry-cured foal sausage. Food Control, 46, 382–389. https://doi.org/10.1016/j.foodcont.2014.05.025
Mahfoozi, A., Shirzad-Aski, H., Kaboosi, H., & Ghaemi, E. A. (2019). Identification of the classical enterotoxin genes of Staphylococcus aureus in various foods by multiplex PCR assay. Iranian Journal of Veterinary Research, 20(3), 209.
Mahros, M. A., Abd-Elghany, S. M., & Sallam, K. I. (2021). Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern. International Journal of Food Microbiology, 346, 109165. https://doi.org/10.1016/j.ijfoodmicro.2021.109165
Márta, D., Wallin-Carlquist, N., Schelin, J., Borch, E., & Rådström, P. (2011). Extended staphylococcal enterotoxin D expression in ham products. Food Microbiology, 28(3), 617–620. https://doi.org/10.1016/j.fm.2010.11.013
Mauer, L. J. (2024). Moisture and total solids analysis. In B. P. Ismail, & S. S. Nielsen (Eds.), Nielsen’s food analysis (6th ed., pp. 233–260). Springer.
Moustafa, N. Y., Deeb, A., Homouda, S., El-Bar, A., & Shimaa, M. (2016). Detection of Staphylococcus aureus classic enterotoxin genes in some meat products using multiplex PCR. Kafrelsheikh Veterinary Medical Journal, 14, 47–58. https://doi.org/10.21608/kvmj.2016.108554
Murphy, A. M., Shariflou, M. R., & Moran, C. (2002). High quality genomic DNA extraction from large milk samples. Journal of Dairy Research, 69(4), 645–649. https://doi.org/10.1017/S0022029902005848
Nacer, S., Nassik, S., El Ftouhy, F. Z., Derqaoui, S., Mouahid, M., & Lkhider, M. (2024). Detection of Staphylococcal Enterotoxins A and E and Methicillin Resistance in Staphylococcus aureus Strains From Moroccan Broiler Chicken Meat. International Journal of Food Science, 2024(1), 2790180. https://doi.org/10.1155/2024/2790180
Normanno, G., Firinu, A., Virgilio, S., Mula, G., Dambrosio, A., Poggiu, A., & Celano, G. V. (2005). Coagulase-positive staphylococci and Staphylococcus aureus in food products marketed in Italy. International Journal of Food Microbiology, 15, 73–79. https://doi.org/10.1016/j.ijfoodmicro.2004.05.008
Omoe, K., Ishikama, M., Shimoda, Y., Hu, D. L., Ueda, S., & Shinagawa, K. (2002). Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh or sei genes. Journal of Clinical Microbiology, 40(3), 857–862. https://doi.org/10.1128/jcm.40.3.857-862.2002
Ortega, E., Abriouel, H., Lucas, R., & Gálvez, A. (2010). Multiple roles of Staphylococcus aureus enterotoxins: Pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins, 2(8), 2117–2131. https://doi.org/10.3390/toxins2082117
Paulin, S., Horn, B., & Hudson, J. A. (2011). Factors influencing staphylococcal enterotoxin production in dairy products. Ministry for primary industries.
Pehlivano?lu, H., Nazl?, B., ?mamo?lu, H., & Çak?r, B. (2015). Piyasada fermente sucuk olarak sat?lan ürünlerin kalite özelliklerinin saptanmas? ve geleneksel Türk fermente sucu?u ile kar??la?t?r?lmas?. ?stanbul Üniversitesi Veteriner Fakültesi Dergisi, 41(2), 191–198.
Pérez-Boto, D., D’Arrigo, M., García-Lafuente, A., Bravo, D., Pérez-Baltar, A., Gaya, P., & Arqués, J. L. (2023). Staphylococcus aureus in the processing environment of cured meat products. Foods, 12(11), 2161. https://doi.org/10.3390/foods12112161
Sahin, S., Mogulkoc, M. N., Kalin, R., & Karahan, M. (2020). Determination of the important toxin genes of Staphylococcus aureus isolated from meat samples, food handlers and food processing surfaces in Turkey. Israel Journal of Veterinary Medicine, 75(2), 42–49.
Savariraj, W. R., Ravindran, N. B., Kannan, P., Paramasivam, R., Senthilkumar, T. M. A., Kumarasamy, P., & Rao, V. A. (2019). Prevalence, antimicrobial susceptibility and virulence genes of Staphylococcus aureus isolated from pork meat in retail outlets in India. Journal of Food Safety, 39(1), e12589. https://doi.org/10.1111/jfs.12589
Schwendimann, L., Merda, D., Berger, T., Denayer, S., Feraudet-Tarisse, C., Kläui, A. J., & Graber, H. U. (2021). Staphylococcal enterotoxin gene cluster: Prediction of enterotoxin (SEG and SEI) production and of the source of food poisoning on the basis of vSa? typing. Applied and Environmental Microbiology, 87(5), e02662-20. https://doi.org/10.1128/AEM.02662-20
Sucu, C., & Turp, G. Y. (2018). The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science, 140, 158–166. https://doi.org/10.1016/j.meatsci.2018.03.012
Sun, J., Wu, Y., Fan, X., Peng, J., Wang, X., Xiong, Y., & Huang, X. (2025). Magnetic-plasmonic blackbody enhanced lateral flow immunoassay of staphylococcal enterotoxin B. Food Chemistry, 465, 142130. https://doi.org/10.1016/j.foodchem.2024.142130
?anl?baba, P. (2022). Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. International Journal of Food Microbiology, 361, 109461. https://doi.org/10.1016/j.ijfoodmicro.2021.109461
Tarekgne, E. K., Skjerdal, T., Skeie, S., Rudi, K., Porcellato, D., Felix, B., & Narvhus, J. A. (2016). Enterotoxin gene profile and molecular characterization of Staphylococcus aureus isolates from bovine bulk milk and milk products of Tigray region, northern Ethiopia. Journal of Food Protection, 79(8), 1387–1395.
Tekin?en, O. C., & Do?ruer, Y. (2000). Her yönüyle past?rma. Selçuk Üniversitesi Bas?mevi.
Valihrach, L., Alibayov, B., Zdenkova, K., & Demnerova, K. (2014). Expression and production of staphylococcal enterotoxin C is substantially reduced in milk. Food Microbiology, 44, 54–59. https://doi.org/10.1016/j.fm.2014.05.020
Wallin-Carlquist, N., Márta, D., Borch, E., & Rådström, P. (2010). Prolonged expression and production of Staphylococcus aureus enterotoxin A in processed pork meat. International Journal of Food Microbiology, 141, S69–S74. https://doi.org/10.1016/j.ijfoodmicro.2010.03.028
Wang, W., Baloch, Z., Jiang, T., Zhang, C., Peng, Z., Li, F., & Xu, J. (2017). Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Frontiers in Microbiology, 8, 2256. https://doi.org/10.3389/fmicb.2017.02256
Wang, Z., Pang, Y., Chung, C. R., Wang, H. Y., Cui, H., Chiang, Y. C., & Lee, T. Y. (2023). A risk assessment framework for multidrug-resistant Staphylococcus aureus using machine learning and mass spectrometry technology. Briefings in Bioinformatics, 24(6), bbad330. https://doi.org/10.1093/bib/bbad330
Wang, Y., Huang, Y., Zhang, Y., & Wang, H. (2025). Ultrasensitive detection of staphylococcal enterotoxin B using electrochemical nanoprobe based on AgNPs@ para-sulfonatocalix [4] arene-functionalized MXene. Sensors and Actuators B: Chemical, 426, 137126. https://doi.org/10.1016/j.snb.2024.137126
Webster, J. L., Dunford, E. K., Hawkes, C., & Neal, B. C. (2011). Salt reduction initiatives around the world. Journal of Hypertension, 29(6), 1043–1050. https://doi.org/10.1097/HJH.0b013e328345ed83
Wu, S., Huang, J., Wu, Q., Zhang, J., Zhang, F., Yang, X., & Xue, L. (2018). Staphylococcus aureus isolated from retail meat and meat products in China: Incidence, antibiotic resistance and genetic diversity. Frontiers in Microbiology, 9, 2767. https://doi.org/10.3389/fmicb.2018.02767
Xu, Y., Huo, B., Li, C., Peng, Y., Tian, S., Fan, L., & Gao, Z. (2019). Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR. Food Chemistry, 283, 338–344. https://doi.org/10.1016/j.foodchem.2018.12.128
Yalç?n, H., & Can, Ö. P. (2013). Geleneksel yöntemLe üretilen sucuklarda Listeria monocytogenes, Staphylococcus aureus ve koliform varl???n?n ara?t?r?lmas?. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 19(4), 705–708.
Yalç?n, H., & Ertürkmen, P. (2024). Characterization of Turkish dry fermented sausage produced with spontaneous microbiota and some lactic acid bacteria mixed culture. Revista Mexicana de Ingeniería Química, 23, 24183. https://doi.org/10.24275/rmiq/Alim24183
Yamazaki, W., Ishibashi, M., Kawahara, R., & Inoue, K. (2008). Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiology, 8, 1–7. https://doi.org/10.1186/1471-2180-8-163
Yilmaz-Oral, Z. F., & Sallan, S. (2023). Evaluation of quality characteristics of commercial fermented sausages (sucuk and heat-treated sucuk). Turkish Journal of Agriculture-Food Science and Technology, 11(10), 1855–1861. https://doi.org/10.24925/turjaf.v11i10.1855-1861.6211
Yilmaz Topcam, M. M., Arslan, B., & Soyer, A. (2024). Sucuk, Turkish-style fermented sausage: Evaluation of the effect of bioprotective starter cultures on its microbiological, physicochemical, and chemical properties. Applied Microbiology, 4(3), 1215–1231. https://doi.org/10.3390/applmicrobiol4030083
Zeaki, N., Cao, R., Skandamis, P. N., Rådström, P., & Schelin, J. (2014). Assessment of high and low enterotoxin A producing Staphylococcus aureus strains on pork sausage. International Journal of Food Microbiology, 182, 44–50. https://doi.org/10.1016/j.ijfoodmicro.2014.05.010
Zhang, G., Liu, T., Cai, H., Hu, Y., Zhang, Z., Huang, M., & Lai, W. (2024a). Molecular engineering and confinement effect powered ultrabright nanoparticles for improving sensitivity of lateral flow immunoassay. ACS Nano, 18(3), 2346–2354. https://doi.org/10.1021/acsnano.3c10427
Zhang, Y., Li, Y., Li, M., Tian, Y., Zhou, T., Yu, Y., & Wang, X. (2024b). A bifunctional protein RANbody based on nanobody facilitates dual-mode immunoassay of Staphylococcal enterotoxin B in food samples. Sensors and Actuators B: Chemical, 418, 136295. https://doi.org/10.1016/j.snb.2024.136295
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2026 Gamze Turkal, Yusuf Dogruer (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
DECLARAÇíO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido í publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.











