Activity invertase and amylase in Marandu grass under shading and nitrogen fertilization

  • Florence Taciana Veriato Coura Universidade Estadual do Sudoeste da Bahia
  • Daniela Deitos Fries Universidade Estadual do Sudoeste da Bahia
  • Rodrigo Diego Quoos Universidade Estadual do Sudoeste da Bahia
  • Fábio Andrade Teixeira Universidade Estadual do Sudoeste da Bahia
  • Aureliano José Viera Pires Universidade Estadual do Sudoeste da Bahia
  • Abdias José de Figueiredo Universidade Estadual do Sudoeste da Bahia
Palavras-chave: carbohydrates, invertases, photosynthesis

Resumo

The objective of this study was to evaluate the activity of invertases and amylases in Brachiaria brizantha cv. Marandu under various shade and nitrogen fertilization conditions. The experiment was carried out in a greenhouse using a 4 x 2 factorial scheme (shading levels of 0, 30, 50, and 80% and fertilization with 0 and 100 kg N ha-1). The activity of the enzymes, cytosol-neutral invertase (Inv-N), vacuole acid (Inv-V) and cell-acidic acid (Inv-CW), reducing sugars (RS), and α and β-amylases were evaluated (α = 0.05). The interaction was significant for Inv-N within the leaf. In the first cycle, the highest activity was in fertilized plants with 30, 50, and 80% shading. For Inv-CW in the 1st cycle, the highest activity occurred with 0, 30, and 50% shading. However, the interaction for Inv-V leaf activity was not significant in the 1st and 2nd cycles. The highest activity observed for Inv-V was in the fertilized plants, suggesting that fertilization increased the enzymatic activity. The activity of the invertases increased both under 30-50% shaded conditions and in full sun. Furthermore, invertase activity was directly linked to the osmoregulatory system. The reduction in RS was related to a low photosynthetic rate, and an increase α and β-amylase was associated with the use of reserve energy sources to meet energetic needs.

Downloads

Não há dados estatísticos.

Referências

Alvarez, V. V. H., & Ribeiro, A. C. (1999). Calagem. In A. C. Ribeiro, P. T. G. Guimaraes, & V. V. H. Alvarez (Ed.), Recomendacoes para o uso de corretivos e fertilizantes em Minas Gerais - 5a. aproximação (p. 41-60). Vicosa, MG: Comissão de Fertilidade do Solo do Estado de Minas Gerais.

Bieniawska Z., Barrat Paul, D. H., Carlicj, A. P., Tholeve, V., Krunger N. J., Martin C., Zemner, R., & Smith, A. M. (2007). Analysus of the sucrose synthese gene family in Arabidopis. The Plant Journal, 49(5), 810–828. DOI: 10.1111/j.1365-313X.2006.03011.x

Cazetta, J. O., Seebauer, J. R., & Below, F. E. (1999). Sucrose and nitrogen supplies regulate growth of maize kernels. Annals of Botany, 84(6), 747-754. DOI: 10.1006/anbo.1999.0976

Franklin, K. A., & Whitelam, G. C. (2005). Phytochromes and shade-avoidance responses in plants. Annals of Botany, 96(2), 169-175.

Gayler, K. R., & Glasziou, K. T. (1972). Physiological functions of acid and neutral invertases in growth and sugar storage in sugar cane. Physiologia Plantarun, 27(1), 25-31. DOI: 10.1111/j.1399-3054.1972.tb01131.x

Gibeaut, M. D., Karuppiah, N., Chang, S. R., Brock, T. G., Vadlamudi, B., Kim, D., Ghosheh, N. S., Rayle, D. L., Carpita, N. C., & Kaufman, B. T. (1990). Cell wall and enzyme changes during gravi response of the leaf-sheat pulvinus of oat (Avena sativa). Plant Physiology, 94(2), 411-416. DOI: 10.1104/pp.94.2.411

Lingle, S. E. (1999). Sugar metabolism during growth and development in sugarcane internodes. Crop Science, 39(1), 480-486. DOI: 10.2135/cropsci1999.0011183X0039000200030x

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing. Analytical Chemistry, 31(3), 426-428. DOI: 10.1021/ac60147a030

Patrick, J.W. (1997). Phloem unloading: Sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 191-222. DOI: 10.1146/annurev.arplant.48.1.191

Rohwer, J. M., Botha, F. C. (2001). Analysis of sucrose accumulation in the sugarcane culm on the basis of in vitro kinetic data. Biochemistry Journal, 358(1), 437-445. DOI: 10.1042/0264-6021: 3580437

Saika, H., Nakazono, M., Ikeda, A., Yamaguchi, J., Masaki, S., Kanekatsu, M., & Nemoto, K. (2005). A transposon-induced spontaneous mutation results in low α- and β-amylase content in rice. Plant Science, 169(1), 239-244. DOI: 10.1080/1343943X.2016.1140008

Skadsen, J. (1993). Nitrificatin in a distribuition sistem. Journal American Water Works Association, 85(7), 95-103. Retrieved on February 24, 2020, from www.jstor.org/stable/41294152

Statistical Analysis System [SAS]. (2017). SAS/STAT User’s Guide [Software - Version 9.2]. Cary, NC: SAS Institute.

Taiz, L., Zeiger, E., Møller, I. A., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6a ed.). Porto Alegre, RS: Artmed.

Tymowska-Lalane, Z, & Kreis, M. (1998). Plant invertases: physiology, biochemistry and molecular biology. Advance Botanical Reserch, 28(1), 71-117, DOI: 10.1016/j.tplants.2004.10.009

Winter, H., & Huber, S. C. (2000). Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Biochemistry and Molecular Biology, 35(4), 253-289. DOI: 10.1080/10409230008984165

Zeng, Y., Wu, Y., Avigne, W. T., & Koch, K. E. (1999). Rapid repression of maize invertases by lowoxygen. Invertases/sucrose synthase balance, sugar signing potential, and seedling survival. Plant Physiology, 121(2), 599-608.

Publicado
2020-04-03
Como Citar
Coura, F. T. V., Fries, D. D., Quoos, R. D., Teixeira, F. A., Pires, A. J. V., & Figueiredo, A. J. de. (2020). Activity invertase and amylase in Marandu grass under shading and nitrogen fertilization. Acta Scientiarum. Agronomy, 42(1), e42496. https://doi.org/10.4025/actasciagron.v42i1.42496
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus