Activity invertase and amylase in Marandu grass under shading and nitrogen fertilization
Abstract
The objective of this study was to evaluate the activity of invertases and amylases in Brachiaria brizantha cv. Marandu under various shade and nitrogen fertilization conditions. The experiment was carried out in a greenhouse using a 4 x 2 factorial scheme (shading levels of 0, 30, 50, and 80% and fertilization with 0 and 100 kg N ha-1). The activity of the enzymes, cytosol-neutral invertase (Inv-N), vacuole acid (Inv-V) and cell-acidic acid (Inv-CW), reducing sugars (RS), and α and β-amylases were evaluated (α = 0.05). The interaction was significant for Inv-N within the leaf. In the first cycle, the highest activity was in fertilized plants with 30, 50, and 80% shading. For Inv-CW in the 1st cycle, the highest activity occurred with 0, 30, and 50% shading. However, the interaction for Inv-V leaf activity was not significant in the 1st and 2nd cycles. The highest activity observed for Inv-V was in the fertilized plants, suggesting that fertilization increased the enzymatic activity. The activity of the invertases increased both under 30-50% shaded conditions and in full sun. Furthermore, invertase activity was directly linked to the osmoregulatory system. The reduction in RS was related to a low photosynthetic rate, and an increase α and β-amylase was associated with the use of reserve energy sources to meet energetic needs.
Downloads
References
Alvarez, V. V. H., & Ribeiro, A. C. (1999). Calagem. In A. C. Ribeiro, P. T. G. Guimaraes, & V. V. H. Alvarez (Ed.), Recomendacoes para o uso de corretivos e fertilizantes em Minas Gerais - 5a. aproximação (p. 41-60). Vicosa, MG: Comissão de Fertilidade do Solo do Estado de Minas Gerais.
Bieniawska Z., Barrat Paul, D. H., Carlicj, A. P., Tholeve, V., Krunger N. J., Martin C., Zemner, R., & Smith, A. M. (2007). Analysus of the sucrose synthese gene family in Arabidopis. The Plant Journal, 49(5), 810–828. DOI: 10.1111/j.1365-313X.2006.03011.x
Cazetta, J. O., Seebauer, J. R., & Below, F. E. (1999). Sucrose and nitrogen supplies regulate growth of maize kernels. Annals of Botany, 84(6), 747-754. DOI: 10.1006/anbo.1999.0976
Franklin, K. A., & Whitelam, G. C. (2005). Phytochromes and shade-avoidance responses in plants. Annals of Botany, 96(2), 169-175.
Gayler, K. R., & Glasziou, K. T. (1972). Physiological functions of acid and neutral invertases in growth and sugar storage in sugar cane. Physiologia Plantarun, 27(1), 25-31. DOI: 10.1111/j.1399-3054.1972.tb01131.x
Gibeaut, M. D., Karuppiah, N., Chang, S. R., Brock, T. G., Vadlamudi, B., Kim, D., Ghosheh, N. S., Rayle, D. L., Carpita, N. C., & Kaufman, B. T. (1990). Cell wall and enzyme changes during gravi response of the leaf-sheat pulvinus of oat (Avena sativa). Plant Physiology, 94(2), 411-416. DOI: 10.1104/pp.94.2.411
Lingle, S. E. (1999). Sugar metabolism during growth and development in sugarcane internodes. Crop Science, 39(1), 480-486. DOI: 10.2135/cropsci1999.0011183X0039000200030x
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing. Analytical Chemistry, 31(3), 426-428. DOI: 10.1021/ac60147a030
Patrick, J.W. (1997). Phloem unloading: Sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 191-222. DOI: 10.1146/annurev.arplant.48.1.191
Rohwer, J. M., Botha, F. C. (2001). Analysis of sucrose accumulation in the sugarcane culm on the basis of in vitro kinetic data. Biochemistry Journal, 358(1), 437-445. DOI: 10.1042/0264-6021: 3580437
Saika, H., Nakazono, M., Ikeda, A., Yamaguchi, J., Masaki, S., Kanekatsu, M., & Nemoto, K. (2005). A transposon-induced spontaneous mutation results in low α- and β-amylase content in rice. Plant Science, 169(1), 239-244. DOI: 10.1080/1343943X.2016.1140008
Skadsen, J. (1993). Nitrificatin in a distribuition sistem. Journal American Water Works Association, 85(7), 95-103. Retrieved on February 24, 2020, from www.jstor.org/stable/41294152
Statistical Analysis System [SAS]. (2017). SAS/STAT User’s Guide [Software - Version 9.2]. Cary, NC: SAS Institute.
Taiz, L., Zeiger, E., Møller, I. A., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6a ed.). Porto Alegre, RS: Artmed.
Tymowska-Lalane, Z, & Kreis, M. (1998). Plant invertases: physiology, biochemistry and molecular biology. Advance Botanical Reserch, 28(1), 71-117, DOI: 10.1016/j.tplants.2004.10.009
Winter, H., & Huber, S. C. (2000). Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Biochemistry and Molecular Biology, 35(4), 253-289. DOI: 10.1080/10409230008984165
Zeng, Y., Wu, Y., Avigne, W. T., & Koch, K. E. (1999). Rapid repression of maize invertases by lowoxygen. Invertases/sucrose synthase balance, sugar signing potential, and seedling survival. Plant Physiology, 121(2), 599-608.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.