Air drying of macauba fruits: maintaining oil quality for biodiesel production

  • Gutierres Nelson Silva Instituto Federal de Educação, Ciência e Tecnologia do Maranhão https://orcid.org/0000-0002-4272-0634
  • José Antônio Saraiva Grossi Universidade Federal de Viçosa
  • Marcela Silva Carvalho Instituto Federal de Educação, Ciência e Tecnologia do Maranhão
  • Kacilda Naomi Kuki Universidade Federal de Viçosa
  • Samuel de Melo Goulart Universidade Federal de Viçosa
  • Leonardo Duarte Pimentel Universidade Federal de Viçosa
Palavras-chave: Acrocomia aculeata, post-harvest, storage, bioenergy

Resumo

Macauba fruits are oil-rich drupes with high moisture content at harvest. This feature can affect the chemical properties of the oil and increase the costs of biodiesel production. Therefore, it is necessary to adopt postharvest strategies to ensure oil quality. The aim of this work was to evaluate the effect of drying macauba fruit on the quality of the pulp oil. Husked and dehusked fruits were dried at 60°C and then stored. At 0, 15, 45, 100, and 180 days after storage, fruit samples were retrieved, and the oil from the pulp was evaluated for physicochemical parameters. The removal of the husk from the fruits considerably reduced the drying time compared to that of the husked fruits. Drying prevented deterioration of the fruit even after 180 days of storage, regardless of the presence of the husk. The drying process allowed for efficient storage of the macauba fruit while maintaining low levels of oil acidity. Furthermore, the oxidative stability of the pulp oil from the dehusked dried fruits lasted longer than that from the husked dried fruits. Therefore, drying is a viable alternative for the postharvest of macauba fruits to maintain the quality of the oil for biodiesel production.

Downloads

Não há dados estatísticos.

Referências

Abreu, A. G., Priolli, R. H. G., Azevedo-Filho, J. A., Nucci, S. M., Zucchi, M. I., Coelho, R. M., & Colombo, C. A. (2012). The genetic structure and mating system of Acrocomia aculeata (Arecaceae). Genetics and Molecular Biology, 35(1), 116-121. DOI: 10.1590/S1415-47572012005000002

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis [ANP]. (2008). ANP number 7 biodiesel standard. Retrieved from http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2008/marco&item=ranp-7--2008

Ali, F. S., Shamsudin, R., & Yunus, R. (2014). The effect of storage time of chopped oil palm fruit bunches on the palm oil quality. Agriculture and Agricultural Science Procedia, 2, 165-172. DOI: 10.1016/j.aaspro.2014.11.024

Association of Official Analytical Chemists [AOAC]. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists. Gaithersburg, ML: AOAC.

Bennamoun, L., Khama, R., & Léonard, A. (2015). Convective drying of a single cherry tomato: Modeling and experimental study. Food and Bioproducts Processing, 94, 114-123. DOI: 10.1016/j.fbp.2015.02.006

Bouaid, A., Martinez, M., & Aracil, J. (2007). Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 86(16), 2596-2602. DOI: 10.1016/j.fuel.2007.02.014

Brasil. (2009). Regras para análise de sementes. Brasília, DF: APA.

César, A. S., Almeida, F. A., Souza, R. P., Silva, G. C., & Atabani, A. E. (2015). The prospects of using Acrocomia aculeata (macaúba) a non-edible biodiesel feedstock in Brazil. Renewable and Sustainable Energy Reviews, 49, 1213-1220. DOI: 10.1016/j.rser.2015.04.125

Chitarra, M. I., & Chitarra, A. B. (2005). Pós-colheita de frutos e Hortaliças: fisiologia e manuseio (2a ed.). Lavras, MG: UFLA.

Ciconini, G., Favaro, P. A., Roscoe, R., Miranda, C. H. B., Tapet, C. F., Miyahira, M., ... Naka, M. K. (2013). Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Industrial Crops and Products, 45, 208-214. DOI: 10.1016/j.indcrop.2012.12.008

Comité Europeu de Normalização [CEN]. (2003). EN 14214 - biodiesel standard. Brussels, BE: CEN.

Evaristo, A. B., Grossi, A. S., Pimentel, L. D., Goulart, S. M., Martins, D. A., Santos, V. L., & Motoike, S. (2016b). Harvest and post-harvest conditions influencing macauba (Acrocomia aculeata) oil quality atributes. Industrial Crops and Products, 85, 63-73. DOI: 10.1016/j.indcrop.2016.02.052

Evaristo, A. B., Grossi, J. A. S., Carneiro, A. D. C. O., Pimentel, D. L., Motoike, S. Y., & Kuki, K. N. (2016a). Actual and putative potentials of macauba palm as feedstock for solid biofuel production from residues. Biomass and Bioenergy, 85, 18-24. DOI: 10.1016/j.biombioe.2015.11.024

Hadi, N. A., Han, N. M., May, C. Y., & Ngan, M. A. H. (2012). Dry heating of palm fruits: effect on selected parameters. American Journal of Engineering and Applied Sciences, 5(2), 128-131. DOI: 10.3844/ajeassp.2012.128.131

Iha, O. K., Alves, F. C., Suarez, P. A., Oliveira, M. B. F., Meneghetti, S. M. P., Santos, B. P. T., & Soletti, J. L. (2014). Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production. Industrial Crops and Products, 62, 318-322. DOI: 10.1016/j.indcrop.2014.09.003

International Energy Agency [IEA]. (2009). World energy outlook. Paris, FR: OECD/IEA.

Issariyakul, I., & Dalai, A. K. (2014). Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews, 31, 446-471. DOI: 10.1016/j.rser.2013.11.001

Kumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57. DOI: 10.1016/j.jfoodeng.2013.08.014

Kumar, D., & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 1-22. DOI: 10.3390/foods6010008

Lopes, D. C., Steidle Neto, A. J. S., Mendes, A. A., & Pereira, D. T. V. (2013). Economic feasibility of biodiesel production from Macauba in Brazil. Energy Economics, 40, 819-824. DOI: 10.1016/j.eneco.2013.10.003

Marfil, P. H. M., Santos, E. M., & Telis, V. R. N. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT - Food Science and Technology, 41(9), 1642-1647. DOI: 10.1016/j.lwt.2007.11.003

Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: processing, characterization and utilization in the food industry–a review. Food Bioscience, 10, 26-41. DOI: 10.1016/j.fbio.2015.01.003

Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesrification – a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268. DOI: 10.1016/j.rser.2004.09.002

Michelin, S., Penha, F. M., Sychoski, M. M., Scherer, R. P., Treichel, H., Valério, A., ... Oliveira, J. V. (2015). Kinetics of ultrasound-assisted enzymatic biodiesel production from Macauba coconut oil. Renewable Energy, 76, 388-393. DOI: 10.1016/j.renene.2014.11.067

Montoya, S. G., Motoike, S. Y., Kuki, K. N., & Couto, A. D. (2016). Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop. Planta, 244(4), 927-938. DOI: 10.1007/s00425-016-2558-7

Moretto, E., & Fett, R. (1998). Tecnologia de óleos e gorduras vegetais na indústria de alimentos. São Paulo, SP: Varela.

Nunes, A. A., Favaro, S. P., Galvani, F., & Miranda, C. H. (2015). Good practices of harvest and processing provide high quality Macauba pulp oil. European Journal of Lipid Science and Technology, 117(12),

-2043. DOI: 10.1002/ejlt.201400577

Rakopoulos, D. C., Rakopoulos, C. D., Giakoumis, E. G., Dimaratos, A. M., & Founti, M. A. (2011). Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oils of Greek origin: Sunflower, cottonseed, corn and olive. Fuel, 90(11), 3439-3446. DOI: 10.1016/j.fuel.2011.06.009

Samadi, S. H., Ghobadian, B., Najafi, G., & Motevali, A. (2014). Potential saving in energy using combined heat and power technology for drying agricultural products (banana slices). Journal of the Saudi Society of Agricultural Sciences, 13(2), 174-182. DOI: 10.1016/j.jssas.2013.09.001

Tagoe, S. M. A., Dickinson, M. J., & Apetorgbor, M. M. (2012). Factors influencing quality of palm oil produced at the cottage industry level in Ghana. International Food Research Journal, 19(1), 271-278.

Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). Review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. DOI: 10.1016/j.apenergy.2012.11.061

Tan, C. H., Ghazali, H. M., Kuntom, A., Tan, C. P., & Ariffin, A. A. (2009). Extraction and physicochemical properties of low free fatty acid crude palm oil. Food Chemistry, 113(2), 645-650. DOI: 10.1016/j.foodchem.2008.07.052

Tippayawong, N., Tantakitti, C., Thavornun, S., & Peerawanitkul, V. (2009). Energy conservation in drying of peeled longan by forced convection and hot air recirculation. Biosystems Engineering, 104(2), 199-204. DOI: 10.1016/j.biosystemseng.2009.06.018

United States Department of Agriculture [USDA]. (2015). Oilseeds: world markets and trade. Washington, DC: USDA.

Publicado
2019-09-20
Como Citar
Silva, G. N., Grossi, J. A. S., Carvalho, M. S., Kuki, K. N., Goulart, S. de M., & Pimentel, L. D. (2019). Air drying of macauba fruits: maintaining oil quality for biodiesel production. Acta Scientiarum. Agronomy, 42(1), e43451. https://doi.org/10.4025/actasciagron.v42i1.43451
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus