Air drying of macauba fruits: maintaining oil quality for biodiesel production
Resumo
Macauba fruits are oil-rich drupes with high moisture content at harvest. This feature can affect the chemical properties of the oil and increase the costs of biodiesel production. Therefore, it is necessary to adopt postharvest strategies to ensure oil quality. The aim of this work was to evaluate the effect of drying macauba fruit on the quality of the pulp oil. Husked and dehusked fruits were dried at 60°C and then stored. At 0, 15, 45, 100, and 180 days after storage, fruit samples were retrieved, and the oil from the pulp was evaluated for physicochemical parameters. The removal of the husk from the fruits considerably reduced the drying time compared to that of the husked fruits. Drying prevented deterioration of the fruit even after 180 days of storage, regardless of the presence of the husk. The drying process allowed for efficient storage of the macauba fruit while maintaining low levels of oil acidity. Furthermore, the oxidative stability of the pulp oil from the dehusked dried fruits lasted longer than that from the husked dried fruits. Therefore, drying is a viable alternative for the postharvest of macauba fruits to maintain the quality of the oil for biodiesel production.
Downloads
Referências
Abreu, A. G., Priolli, R. H. G., Azevedo-Filho, J. A., Nucci, S. M., Zucchi, M. I., Coelho, R. M., & Colombo, C. A. (2012). The genetic structure and mating system of Acrocomia aculeata (Arecaceae). Genetics and Molecular Biology, 35(1), 116-121. DOI: 10.1590/S1415-47572012005000002
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis [ANP]. (2008). ANP number 7 biodiesel standard. Retrieved from http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2008/marco&item=ranp-7--2008
Ali, F. S., Shamsudin, R., & Yunus, R. (2014). The effect of storage time of chopped oil palm fruit bunches on the palm oil quality. Agriculture and Agricultural Science Procedia, 2, 165-172. DOI: 10.1016/j.aaspro.2014.11.024
Association of Official Analytical Chemists [AOAC]. (2005). Official Methods of Analysis of the Association of Official Analytical Chemists. Gaithersburg, ML: AOAC.
Bennamoun, L., Khama, R., & Léonard, A. (2015). Convective drying of a single cherry tomato: Modeling and experimental study. Food and Bioproducts Processing, 94, 114-123. DOI: 10.1016/j.fbp.2015.02.006
Bouaid, A., Martinez, M., & Aracil, J. (2007). Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 86(16), 2596-2602. DOI: 10.1016/j.fuel.2007.02.014
Brasil. (2009). Regras para análise de sementes. Brasília, DF: APA.
César, A. S., Almeida, F. A., Souza, R. P., Silva, G. C., & Atabani, A. E. (2015). The prospects of using Acrocomia aculeata (macaúba) a non-edible biodiesel feedstock in Brazil. Renewable and Sustainable Energy Reviews, 49, 1213-1220. DOI: 10.1016/j.rser.2015.04.125
Chitarra, M. I., & Chitarra, A. B. (2005). Pós-colheita de frutos e Hortaliças: fisiologia e manuseio (2a ed.). Lavras, MG: UFLA.
Ciconini, G., Favaro, P. A., Roscoe, R., Miranda, C. H. B., Tapet, C. F., Miyahira, M., ... Naka, M. K. (2013). Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Industrial Crops and Products, 45, 208-214. DOI: 10.1016/j.indcrop.2012.12.008
Comité Europeu de Normalização [CEN]. (2003). EN 14214 - biodiesel standard. Brussels, BE: CEN.
Evaristo, A. B., Grossi, A. S., Pimentel, L. D., Goulart, S. M., Martins, D. A., Santos, V. L., & Motoike, S. (2016b). Harvest and post-harvest conditions influencing macauba (Acrocomia aculeata) oil quality atributes. Industrial Crops and Products, 85, 63-73. DOI: 10.1016/j.indcrop.2016.02.052
Evaristo, A. B., Grossi, J. A. S., Carneiro, A. D. C. O., Pimentel, D. L., Motoike, S. Y., & Kuki, K. N. (2016a). Actual and putative potentials of macauba palm as feedstock for solid biofuel production from residues. Biomass and Bioenergy, 85, 18-24. DOI: 10.1016/j.biombioe.2015.11.024
Hadi, N. A., Han, N. M., May, C. Y., & Ngan, M. A. H. (2012). Dry heating of palm fruits: effect on selected parameters. American Journal of Engineering and Applied Sciences, 5(2), 128-131. DOI: 10.3844/ajeassp.2012.128.131
Iha, O. K., Alves, F. C., Suarez, P. A., Oliveira, M. B. F., Meneghetti, S. M. P., Santos, B. P. T., & Soletti, J. L. (2014). Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production. Industrial Crops and Products, 62, 318-322. DOI: 10.1016/j.indcrop.2014.09.003
International Energy Agency [IEA]. (2009). World energy outlook. Paris, FR: OECD/IEA.
Issariyakul, I., & Dalai, A. K. (2014). Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews, 31, 446-471. DOI: 10.1016/j.rser.2013.11.001
Kumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57. DOI: 10.1016/j.jfoodeng.2013.08.014
Kumar, D., & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 1-22. DOI: 10.3390/foods6010008
Lopes, D. C., Steidle Neto, A. J. S., Mendes, A. A., & Pereira, D. T. V. (2013). Economic feasibility of biodiesel production from Macauba in Brazil. Energy Economics, 40, 819-824. DOI: 10.1016/j.eneco.2013.10.003
Marfil, P. H. M., Santos, E. M., & Telis, V. R. N. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT - Food Science and Technology, 41(9), 1642-1647. DOI: 10.1016/j.lwt.2007.11.003
Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: processing, characterization and utilization in the food industry–a review. Food Bioscience, 10, 26-41. DOI: 10.1016/j.fbio.2015.01.003
Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesrification – a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268. DOI: 10.1016/j.rser.2004.09.002
Michelin, S., Penha, F. M., Sychoski, M. M., Scherer, R. P., Treichel, H., Valério, A., ... Oliveira, J. V. (2015). Kinetics of ultrasound-assisted enzymatic biodiesel production from Macauba coconut oil. Renewable Energy, 76, 388-393. DOI: 10.1016/j.renene.2014.11.067
Montoya, S. G., Motoike, S. Y., Kuki, K. N., & Couto, A. D. (2016). Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop. Planta, 244(4), 927-938. DOI: 10.1007/s00425-016-2558-7
Moretto, E., & Fett, R. (1998). Tecnologia de óleos e gorduras vegetais na indústria de alimentos. São Paulo, SP: Varela.
Nunes, A. A., Favaro, S. P., Galvani, F., & Miranda, C. H. (2015). Good practices of harvest and processing provide high quality Macauba pulp oil. European Journal of Lipid Science and Technology, 117(12),
-2043. DOI: 10.1002/ejlt.201400577
Rakopoulos, D. C., Rakopoulos, C. D., Giakoumis, E. G., Dimaratos, A. M., & Founti, M. A. (2011). Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oils of Greek origin: Sunflower, cottonseed, corn and olive. Fuel, 90(11), 3439-3446. DOI: 10.1016/j.fuel.2011.06.009
Samadi, S. H., Ghobadian, B., Najafi, G., & Motevali, A. (2014). Potential saving in energy using combined heat and power technology for drying agricultural products (banana slices). Journal of the Saudi Society of Agricultural Sciences, 13(2), 174-182. DOI: 10.1016/j.jssas.2013.09.001
Tagoe, S. M. A., Dickinson, M. J., & Apetorgbor, M. M. (2012). Factors influencing quality of palm oil produced at the cottage industry level in Ghana. International Food Research Journal, 19(1), 271-278.
Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). Review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. DOI: 10.1016/j.apenergy.2012.11.061
Tan, C. H., Ghazali, H. M., Kuntom, A., Tan, C. P., & Ariffin, A. A. (2009). Extraction and physicochemical properties of low free fatty acid crude palm oil. Food Chemistry, 113(2), 645-650. DOI: 10.1016/j.foodchem.2008.07.052
Tippayawong, N., Tantakitti, C., Thavornun, S., & Peerawanitkul, V. (2009). Energy conservation in drying of peeled longan by forced convection and hot air recirculation. Biosystems Engineering, 104(2), 199-204. DOI: 10.1016/j.biosystemseng.2009.06.018
United States Department of Agriculture [USDA]. (2015). Oilseeds: world markets and trade. Washington, DC: USDA.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.