<b>Soil surface spectral data from Landsat imagery for soil class discrimination</b> - doi: 10.4025/actasciagron.v34i1.12204
Abstract
The aim of this study was to develop and test a method to determine and discriminate soil classes in the state of São Paulo, Brazil, based on spectral data obtained via Landsat satellite imagery. Satellite reflectance images were extracted from 185 spectral reading points, and discriminant equations were obtained to establish each soil class within the studied area. Sixteen soil classes were analyzed, and discriminant equations that comprised TM5/Landsat sensor bands 1, 2, 3, 4, 5, and 7 were established. The results showed that this methodology could effectively identify individual soil classes using discriminant analyses of the spectral data obtained from the surface. Success rates of > 40% were achieved for 14 of the 16 evaluated soil classes when applying the satellite image data. When the 10 soil classes containing the largest number of minimum cartographic areas were used, the hit rate increased to > 50%, for seven soil classes with a global hit rate of 52%. When the soil classes were grouped based on their parent materials, the hit rate increased to 70%. Thus, we concluded that the spectral method for soil classification was efficient.
Downloads
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.