<b>Salinity reduces carbon assimilation and the harvest index of cassava plants (<i>Manihot esculenta</i> Crantz)

  • Jailson Lopes Cruz Empresa Brasileira de Pesquisa Agropecuaria
  • Mauricio Antonio Coelho Filho Empresa Brasileira de Pesquisa Agropecuária
  • Eugenio Ferreira Coelho Empresa Brasileira de Pesquisa Agropecuária
  • Andrade Alves dos Santos Universidade Federal do Recôncavo da Bahia
Keywords: photosynthesis, dry matter, water use efficiency, harvest index, root, shoot ratio, salt stress.

Abstract

 

This study was developed to evaluate the effects of salinity on the growth and gas exchange of cassava plants, cultivar Verdinha. The four concentrations of NaCl (mM) were as follows: 0, 20, 40, and 60. Under salinity, the lowest concentration of Na+ ions was observed in the tuberous roots; however, the dry matter of tuberous roots was reduced with an application of just 20 mM NaCl. The harvest index was reduced 50% with the highest salt concentration. Salinity reduced carbon assimilation (A), stomatal conductance (gs), transpiration, and the instantaneous water use efficiency. The correlation between gs and A was high and positive, showing that stomatal movement was one of the responsible for the lower A. Under salt stress, there was an increase in intercellular CO2 concentration, indicating the impairment of carbon metabolism. Based on the reduction of dry matter of the tuberous roots (reduction of 81% under 60 mM NaCl), it was concluded that cassava is sensitive to salinity. The growth of shoots and the absorbing roots were minimally affected by salinity, even in the situation where A was reduced; therefore, the sensitivity of cassava was related to the high sensitivity of the tuberous roots to the ionic and/or osmotic effects of salinity. Thus, tuberous roots can be the target organ in studies that aim to improve the tolerance of cassava to salinity.

 

Downloads

Download data is not yet available.

References

Abideen, Z., Koyro, H. W., Huchzermeyer, B., Ahmed, M. Z., Gul, B., & Khan, M. A. (2014). Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environmental and Experimental Botany, 105, 70-76. doi: 10.1016/j.envexpbot

Albacete, A., Cantero-Navarro, E., Balibrea, M. E., Großkinsky, D. K., De La Cruz González, M., Martínez-Andújar, C., ... Pérez-Alfocea, F. (2014). Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. Journal of Experimental Botany, 65(20), 6081-6095.

Alves, A. A., & Setter, T. L. (2004). Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environmental and Experimental Botany, 51(3), 259-271.

Amjad, M., Akhtar, J., Anwar-ul-Haq, M., Yang, A., Akhtar, S. S., & Jacobsen, S. E. (2014). Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Scientia Horticulturae, 172, 109-116.

An, F., Fan, J., Li, J., Li, Q. X., Li, K., Zhu, W., & Chen, S. (2014). Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes. PloS one, 9(4), e85991.

Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2010). Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta, 232(5), 1251-1262.

Astolfi, S., & Zuchi, S. (2013). Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiologiae Plantarum, 35(1), 175-181.

Balibrea, M. E., Cuartero, J., Bolarín, M. C., & Pérez‐Alfocea, F. (2003). Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity. Physiologia Plantarum, 118(1), 38-46.

Burns, A., Gleadow, R., Cliff, J., Zacarias, A., & Cavagnaro, T. (2010). Cassava: the drought, war and famine crop in a changing world. Sustainability, 2(11), 3572-3607.

Cabot, C., Sibole, J. V., Barceló, J., & Poschenrieder, C. (2014). Lessons from crop plants struggling with salinity. Plant Science, 226, 2-13.

Carretero, C. L., Cantos, M., García, J. L., & Troncoso, A. (2007). In vitro–ex vitro salt (NaCl) tolerance of cassava (Manihot esculenta Crantz) plants. In Vitro Cellular & Developmental Biology-Plant, 43(4), 364-369.

Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560.

Costa, C. D. N. M., Santa Brígida, A. B., Borges, B. N., Menezes Neto, M. A., Carvalho, L. J. C. B., & Souza, C. R. B. (2011). Levels of MeLEA3, a cDNA sequence coding for an atypical late embryogenesis abundant protein in cassava, increase under in vitro salt stress treatment. Plant Molecular Biology Reporter, 29(4), 997-1005.

Cruz, J. L., Mosquim, P. R., Pelacani, C. R., Araujo, W. L., & DaMatta, F. M. (2003). Carbon partitioning and assimilation as affected by nitrogen deficiency in cassava. Photosynthetica, 41(2), 201-207.

Cruz, J. L., Pelacani, C. R., Coelho, E. F., Caldas, R. C., Almeida, A. D., & Queiroz, J. D. (2006). Influência da salinidade sobre o crescimento, absorção e distribuição de sódio, cloro e macronutrientes em plântulas de maracujazeiro-amarelo. Bragantia, 65(2), 275-284.

Cruz, J. L., Alves, A. A., LeCain, D. R., Ellis, D. D., & Morgan, J. A. (2014). Effect of elevated CO2 concentration and nitrate: ammonium ratios on gas exchange and growth of cassava (Manihot esculenta Crantz). Plant and Soil, 374(1-2), 33-43.

Dasgupta, N., Nandy, P., & Das, S. (2013). Salt stress: a biochemical and physiological adaptation of some Indian halophytes of Sundarbans. In Molecular Stress Physiology of Plants (p. 155-177). New Delhi, IN: Springer India.

Eisa, S., Hussin, S., Geissler, N., & Koyro, H. W. (2012). Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Australian Journal of Crop Science, 6(2), 357.

El-Sharkawy, M. A. (2007). Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazilian Journal of Plant Physiology, 19(4), 257-286.

Ferreira, D. F. (2011). Sisvar: um sistema computacional de análise estatística. Ciência e Agrotecnologia, 35(6), 1039‑1042.

Gimmler, H., & Möller, E. (1981). Salinity‐dependent regulation of starch and glycerol metabolism in Dunaliella parva. Plant, Cell & Environment, 4(5), 367-375.

Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, ID 701596, 1-18. doi: 10.1155/2014/701596

Hawker, J. S., & Smith, G. M. (1982). Salt tolerance and regulation of enzymes of starch synthesis in cassava (Manihot esculenta Crantz). Functional Plant Biology, 9(5), 509-518.

Indira, P. (1978). Salinity effects on plant growth and tuberization in cassava. Journal of Root Crops, 4, 119-123.

Lawson, T., Simkin, A. J., Kelly, G., & Granot, D. (2014). Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytologist, 203(4), 1064-1081.

Maggio, A., Raimondi, G., Martino, A., & De Pascale, S. (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282.

Malavolta, E., Vitti, G. C., Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações (2a ed.). Piracicaba, SP: Potafos.

Manchanda, G., & Garg, N. (2008). Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30(5), 595-618.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.

Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043.

Omamt, E. N., Hammes, P. S., & Robbertse, P. J. (2006). Differences in salinity tolerance for growth and water‐use efficiency in some amaranth (Amaranthus spp.) genotypes. New Zealand Journal of Crop and Horticultural Science, 34(1), 11-22.

Orsini, F., Alnayef, M., Bona, S., Maggio, A., & Gianquinto, G. (2012). Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany, 81, 1-10.

Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056-4075.

Pérez-López, U., Robredo, A., Lacuesta, M., Mena-Petite, A., & Muñoz-Rueda, A. (2012). Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynthesis Research, 111(3), 269-283.

Santa Brígida, A. B., Dos Reis, S. P., Costa, C. D. N. M., Cardoso, C. M. Y., Lima, A. M., & Souza, C. R. B. (2014). Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Molecular Biology Reports, 41(3), 1787-1797.

Qiao, Y., Jiang, W., Lee, J., Park, B., Choi, M. S., Piao, R., ... & Seo, H. S. (2010). SPL28 encodes a clathrin‐associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytologist, 185(1), 258-274.

Setter, T. L., & Fregene, M. A. (2007). Recent advances in molecular breeding of cassava for improved drought stress tolerance. In M. Jenks, P. Hasegawa, & M. Jain (Eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops (p. 701-711). Berlin, GE: Springer.

Siddikee, M. A., Chauhan, P. S., & Sa, T. (2012). Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. Journal of Plant Growth Regulation, 31(2), 265-272.

Silva, E. D., Ribeiro, R. V., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2010). Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatrophacurcas plants. Journal of Arid Environments, 74(10), 1130-1137.

Tedeschi, A., Zong, L., Huang, C. H., Vitale, L., Volpe, M. G., & Xue, X. (2017). Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv. Huanghemi in north‐western China. Journal of Agronomy and Crop Science, 203(1), 41–55.

Wang, X., Geng, S., Ma, Y., Shi, D., Yang, C., & Wang, H. (2015). Growth, photosynthesis, solute accumulation, and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress. Agronomy Journal, 107(2), 651-661.

Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., & Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 4(8), 2669-2681.

Published
2017-08-11
How to Cite
Cruz, J. L., Coelho Filho, M. A., Coelho, E. F., & Santos, A. A. dos. (2017). <b>Salinity reduces carbon assimilation and the harvest index of cassava plants (<i>Manihot esculenta</i&gt; Crantz). Acta Scientiarum. Agronomy, 39(4), 545-555. https://doi.org/10.4025/actasciagron.v39i4.32952
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus