Silicon and methyl jasmonate in the vegetative development and genetic stability of rice
Abstract
Given the high demand for food worldwide, options for maximizing food production with minimum environmental impact are needed. Therefore, the objective of the present study was to evaluate the effect of silicon (Si) and methyl jasmonate (MeJA) in the vegetative development and genetic stability of rice plants, BRSMG Caravera cultivar. The treatments used were T1 - Control group (without Si and MeJA); T2 - Tween foliar; and T3 - Si drench, T4 - MeJA foliar, and T5 - Si drench + MeJA foliar. The use of Si or Si + MeJA promoted an increase in the height, relative chlorophyll index (RCI), and fresh and dry masses, in addition to a greater Si accumulation in the plants. However, there was no difference in the quantity of DNA or in the coefficient of variation (CV) among the treatments, proving the use of silicon separately or in combination with methyl jasmonate contributed to the vegetative development and did not affect the genetic stability of the plants.
Downloads
References
Ahmed, M., Hassen, F. U., Qadeer, U., & Aslam, M. A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6(3), 594–607. Doi: 10.5897/ajar10.626
Anjum, S. A., Tanveer, M., Hussain, S., Tung, S. A., Samad, R. A., Wang, L., … & Shahzad, B. (2016). Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiologiae Plantarum, 38(1), 1-11. Doi: 10.1007/s11738-015-2047-9
Antoniazzi, D., Souza Ferrari, M. P., Nascimento, A. B., Silveira, F. A., Pio, L. A. S., Pasqual, M., & Magalhães, H. M. (2016). Growth regulators, DNA content and anatomy in vitro-cultivated Curcuma longa seedlings. African Journal of Biotechnology, 15(32), 1711-1725. Doi: 10.5897/AJB2016.15445
Aoki, K., Akai, K., & Ujiie, K. (2017). A choice experiment to compare preferences for rice in Thailand and Japan: The impact of origin, sustainability, and taste. Food Quality and Preference, 56(Part B), 274-284.
Assis, F. A., Moraes, J. C., Auad, A. M., & Coelho, M. (2013). The effects of foliar spray application of silicon on plant damage levels and components of larval biology of the pest butterfly Chlosyne lacinia saundersii (Nymphalidae). International Journal of Pest Management, 59(2), 128-134.
Ávila, F. W., Baliza, D. P., Faquin, V., Araújo, J. L., & Ramos, S. J. (2010). Silicon-nitrogen interaction in rice cultivated under nutrient solution. Revista Ciência Agronômica, 41(2), 184-190.
Awang, N. A. A., Ismail, M. R., Omar, D., & Islam, M. R. (2015). Comparative study of the application of jasmonic acid and pesticide in chilli: effects on physiological activities, yield and viruses control. Bioscience Journal, 31(3), 672-681.
Chagas, R. C. S., Muraoka, T., Korndörfer, G. H., & Camargo, M. S. (2016). Silicon fertilization improve yield and quality of rice and pearl millet in cerrado soils. Bioscience Journal, 32(4), 899-907.
Costa, B. N. S., Dias, G. D. M. G., Costa, I. D. J. S., Assis, F. A. D., Silveira, F. A. D., & Pasqual, M. (2016). Effects of silicon on the growth and genetic stability of passion fruit. Acta Scientiarum. Agronomy, 38(4), 503-511.
Doležel, J., Sgorbati, S., & Lucretti, S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum, 85(4), 625-631.
Doležel, J., & Bartoš, J. A. N. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 95(1), 99-110.
Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., ... & Faiq, M. (2014). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 75(2), 391-404.
Galbraith, D. W., Lambert, G. M., Macas, J., & Dolezel, J. (2001). Analysis of nuclear DNA content and ploidy in higher plants. Current Protocols in Cytometry, 7(76), 7-22.
Gautam, P., Lal, B., Tripathi, R., Shahid, M., Baig, M. J., Raja, R., … & Nayak, A. K. (2016). Role of silica and nitrogen interaction in submergence tolerance of Rice. Environmental and Experimental Botany, 125, 98-109.
Han, Y., Lei, W., Wen, L., & Hou, M. (2015). Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PloS one, 10(4), e0120557.
Henriet, C., Bodarwé, L., Dorel, M., Draye, X., & Delvaux, B. (2008). Leaf silicon content in banana (Musa spp.) reveals the weathering stage of volcanic ash soils in Guadeloupe. Plant and Soil, 313(1-2), 71-82.
Hossain, M. T., Mori, R., Soga, K., Wakabayashi, K., Kamisaka, S., Fujii, S., ... & Hoson, T. (2002). Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. Journal of Plant Research, 115(1), 23-27.
Hsu, Y. Y., Chao, Y. Y., & Kao, C. H. (2013). Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium. Journal of Plant Physiology, 170(1), 63-69.
Isa, M., Bai, S., Yokoyama, T., Ma, J. F., Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2010). Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant and Soil, 331(1-2), 361-375.
Korndorfer, G. H., Pereira, H. S., & Nolla, A. (2004). Análise de silício: solo, planta e fertilizante. Uberlândia, MG: GPSi/ICIAG/UFU. (Boletim Técnico, 2).
Liu, P., Yin, L., Wang, S., Zhang, M., Deng, X., Zhang, S., & Tanaka, K. (2015). Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environmental and Experimental Botany, 111(1), 42-51.
Lopes, C. A., Dias, G. D. M. G., Pio, L. A. S., Silveira, F. A., Rodrigues, F. A., & Pasqual, M. (2016). Indução de calos, potencial embriogênico e estabilidade genética em pitaia vermelha. Revista Brasileira de Ciências Agrárias, 11(1), 21-25.
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397.
Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19), 3049-3057.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., ... & Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448(7150), 209-212.
Martínez-Esplá, A., Zapata, P. J., Castillo, S., Guillén, F., Martínez-Romero, D., Valero, D., & Serrano, M. (2014). Preharvest application of methyl jasmonate (MeJA) in two plum cultivars. 1. Improvement of fruit growth and quality attributes at harvest. Postharvest Biology and Technology, 98(12), 98-105.
Menezes, T. P., Pio, L. A. S., Ramos, J. D., Pasqual, M., & Setotaw, T. A. (2016). Endoreduplication in floral structure, vegetative and fruits of red pitaya with white pulp. Bioscience Journal, 32(4), 931-939.
Marie, D., & Brown, S. C. (1993). A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell, 78(1‐2), 41-51.
Moraes, M. C., Laumann, R. A., Pareja, M., Sereno, F. T., Michereff, M. F., Birkett, M. A., ... & Borges, M. (2009). Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis‐jasmone. Entomologia Experimentalis et Applicata, 131(2), 178-188.
Nogueira, G. F., Pio, L. A. S., Pasqual, M., Amaral, A., & Scherwinski-Pereira, J. E. (2015). An approach on the in vitro maintenance of sugarcane with views for conservation and monitoring of plant nuclear DNA contents via flow cytometry. In Vitro Cellular & Developmental Biology-Plant, 51(2), 220-230.
Noir, S., Bömer, M., Takahashi, N., Ishida, T., Tsui, T. L., Balbi, V., ... & Devoto, A. (2013). Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiology, 161(4), 1930-1951.
Pauwels, L., Morreel, K., De Witte, E., Lammertyn, F., Van Montagu, M., Boerjan, W., ... & Goossens, A. (2008). Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proceedings of the National Academy of Sciences, 105(4), 1380-1385.
Perez, C. E. A., Rodrigues, F. Á., Moreira, W. R., & DaMatta, F. M. (2014). Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology, 104(2), 143-149.
Raza, M. M., Ullah, S., Ahmad, Z., Saqib, S., Ahmad, S., Bilal, H. M., & Wali, F. (2016). Silicon Mediated Arsenic Reduction in Rice by Limiting Its Uptake. Agricultural Sciences, 7(1), 1-10.
Ribeiro Júnior, J. I. (2001). Análises estatísticas no SAEG. Viçosa, MG: UFV.
Soares, A. A., Sousa Reis, M., Oliveira Cornélio, V. M., Soares, P. C., Júnior, G. T. C., Guedes, J. M., ... & Dias, F. P. (2008). BRSMG Caravera: cultivar de arroz para terras altas. Pesquisa Agropecuária Brasileira, 43(7), 937-940.
Tamai, K., & Ma, J. F. (2008). Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant and Soil, 307(1-2), 21-27.
Wasternack, C. (2014). Jasmonates in plant growth and stress responses. In Phytohormones: A window to metabolism, signaling and biotechnological applications (p. 221-263). New York, US: Springer.
Yamamoto, T., Nakamura, A., Iwai, H., Ishii, T., Ma, J. F., Yokoyama, R., Nishitani, K., Satoh, S., & Furukawa, J. (2012). Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. Journal of Plant Research, 125(6), 771-779.
Ye, M., Song, Y., Long, J., Wang, R., Baerson, S. R., Pan, Z., ... & Zeng, R. (2013). Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences, 110(38), 3631-3639.
Yogendra, N. D., Kumara, B. H., Chandrashekar, N., Prakash, N. B., Anantha, M. S., & Jeyadeva, H. M. (2014). Effect of silicon on real time nitrogen management in a rice ecosystem. African Journal of Agricultural Research, 9(9), 831-840.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.