Consideration of the appropriate variation sources of the statistical model and their impacts on plant breeding
Abstract
The present work has aimed to assess the consideration of the appropriate variation sources of the statistical model and their impacts on the conclusions plant breeding. The Value for Cultivation and Use test was conducted to assess three common locations (Lages, Ponte Serrada, and Canoinhas) and four non-common locations (Chapecó, Guatambu, Urussanga, and Campos Novos). The grain yields of six bean genotypes were evaluated in order to represent the imbalance between the common and non-common locations. The statistical analysis considered two situations: i) union of the location factors and cultivation years, with a single variation source called environment and ii) decomposition of the mean square values of the two factors, location and year. According to the simplified analysis (environmental variation source), the F test for the genotype factor was highly significant (p = 0.0006). On the other hand, the hypothesis test for the genotype factor was not significant (p = 0.7370) when the decomposition of mean squares was used. The simplified analysis presents some erroneous points, such as the use of a mean residue to test the hypothesis of the genotype factor, since this factor is composed of several sources of variation, and there is no exact F test. However, approximate F tests can be obtained by constructing linear combinations of average squares. This fact notes the relevance of considering the appropriate sources of variation within the statistical model, with a direct impact on the conclusions and recommendations of cultivars with superior performance.
Downloads
References
Assefa, T., Wu, J., Beebe, S. E., Rao, I. M., Marcomin, D., & Claude, R. J. (2015). Improving adaptation to drought stress in small red common bean: phenotypic differences and predicted genotypic effects on grain yield, yield components and harvest index. Euphytica, 203(3), 477-489. DOI: 10.1007/s10681-014-1242-x.
Bertoldo, J. G., Coimbra, J. L. M., Nodari, B. O., Guidolin, A. F., Hemp, S., Barili, L. D., … Rozzeto, D. S. (2009). Stratification of the state of Santa Catarina in macro-environments for bean cultivation. Crop Breeding and Applied Biotechnology, 9(4), 335-343. DOI: 10.12702/1984-7033.v09n04a08.
Borges, V., Soares, A. A., Resende, M. D. V., Reis, M. S., Cornélio, V. M. O., & Soares, P. C. (2009). Progresso genético do programa de melhoramento de arroz de terras altas de minas gerais utilizando modelos mistos. Revista Brasileira de Biometria, 27(3), 478-490.
Boukid, F., Prandi, B., Sforza, S., Sayar, R., Seo, Y. W., Mejri, M., & Yacoubi, I. (2017). Understanding the effects of genotype, growing year, and breeding on tunisian durum wheat allergenicity. 1. The Baker's Asthma case. Journal of Agricultural and Food Chemistry, 65(28), 5831-5836. DOI: 10.1021/acs.jafc.7b02040.
Carvalho, L. C. B., Damasceno-Silva, K. J., Rocha, M. M., & Oliveira, G. C. X. (2017). Genotype x environment interaction in cowpea by mixed models. Revista Ciência Agronômica, 48(5), 872-878. DOI: 10.5935/1806-6690.20170103.
Coimbra, J. L. M., Souza, V. Q., Kopp, M. M., Silva, J. G. C., Oliveira, A. C., & Carvalho, F. I. F. (2006). Esperanças matemáticas dos quadrados médios: uma análise essencial. Ciência Rural, 36(6), 1730-1738. DOI: 10.1590/S0103-84782006000600010.
Coimbra, J. L. M, Bertoldo, J. G, Elias, H. T., Hemp, S., Vale, N. M. d., Toaldo, D., ... Kopp, M. M. (2009). Mineração da interação genótipo x ambiente em Phaseolus vulgaris L. para o Estado de Santa Catarina. Ciência Rural, 39(2), 355-363.
Companhia Nacional de Abastecimento. [CONAB]. (2016). Acompanhamento da safra brasileira de grãos. v.4, safra 2016/17, Segundo Levantamento. Brasília, DF: CONAB.
Dias, F. T. C., Pitombeira, J. B., Teófilo, E. M., & Barbosa, F. S. (2009). Adaptabilidade e estabilidade fenotípica para o caráter rendimento de grãos em cultivares de soja para o Estado do Ceará. Revista Ciência Agronômica, 40(1), 129-134.
Gupta, S. K., Rathore, A., Yadav, O. P., Rai, K. N., Khairwal, I. S, Rajpurohit, B. S., & Das, R. R. (2013). Identifying mega-environments and essential test-locations for pearl millet cultivar selection in India. Crop Science, 53(6), 2444-2453. DOI: 10.2135/cropsci2013.01.0053
Instituto Brasileiro de Geografia e estatística [IBGE]. (2015). Pesquisa Mensal de Previsão e Acompanhamento das Safras Agrícolas no Ano Civil. Levantamento Sistemático da Produção Agrícola, 29(10), 1-79.
Ignaczak, J. C., & Silva, J. G. C. (1978). Análise conjunta de grupo de experimentos com alguns locais e tratamentos não comuns. Pesquisa Agropecuária Brasileira, 13(3), 56-66.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Shabenberger, O. (2006). SAS® for mixed models. Cary, NC: SAS Institute.
Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686-1697. DOI: 10.1104/pp.112.208298
Nassir, A. L., & Ariyo, O. J. (2011). Genotype x Environment Interaction and Yield-Stability Analyses of Rice Grown in Tropical Inland Swamp. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 220-225. DOI: 10.15835/nbha3915591
Pereira, H. S., Melo, L. C., Faria, L. C., Peloso, M. J. D., Díaz, J. L. C., & Wendland, A. (2010). Indicação de cultivares de feijoeiro comum baseada na avaliação conjunta de diferentes épocas de semeadura. Pesquisa Agropecuária Brasileira, 45(6), 571-578. DOI: 10.1590/S0100-204X2010000600006
Pereira, T. C. V., Schmit, R., Haveroth, E. J., Melo, R. C., Coimbra, J. L. M., Guidolin, A. F., & Backes, R. L. (2016). Reflexo da interação genótipo x ambiente sobre o melhoramento genético de feijão. Ciência Rural, 46(3), 411-417. DOI: 10.1590/0103-8478cr20130998
Piepho, H. P., Herndl, M., Pötsch, E. M., & Bahn, M. (2017). Designing an experiment with quantitative treatment factors to study the effects of climate change. Journal of Agronomy and Crop Science, 203(6), 584-592. DOI: 10.1111/jac.12225
Schmildt, E. R., Nascimento, A. L., Cruz, C. D., & Oliveira, J. A. R. (2011). Avaliação de metodologias de adaptabilidade e estabilidade de cultivares milho. Acta Scientiarum. Agronomy, 33(1), 51-58. DOI: 10.4025/actasciagron.v33i1.5817
Silva, J. G. C. (1999). A consideração da estrutura das unidades em inferências derivadas do experimento. Pesquisa Agropecuária Brasileira, 34(6), 911-925. DOI: 10.1590/S0100-204X1999000600001
Silva, J. G. C. (2014). Análise crítica do processo de lançamento de cultivares. Revista da Estatística UFOP, 3(2), 16-21.
Silva, T. R. C., Amaral Júnior, A. T., Gonçalves, L. S. A., Candido, L. S., Vittorazzi, C., & Scapim, C. A. (2013). Agronomic performance of popcorn genotypes in Northern and Northwestern Rio de Janeiro State. Acta Scientiarum. Agronomy, 35(1), 57-63. DOI: 10.4025/actasciagron.v35i1.15694
Vencovsky, R., Ramalho, M. A. P., & Toledo, F. H. R. B. (2012). Contribution and perspectives of quantitative genetics to plant breeding in Brazil. Crop Breeding and Applied Biotechnology, 12(Spec), 7-14. DOI: 10.1590/S1984-70332012000500002
Wechsler, F. S. (1998). Fatoriais fixos desbalanceados: uma análise mal compreendida. Pesquisa Agropecuária Brasileira, 33(3), 231-262.
Yan, W. (2015). Mega-environment analysis and test location evaluation based on unbalanced multiyear data. Crop Science, 55(1), 113-122. DOI: 10.2135/cropsci2014.03.0203.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.