Visual selection of Urochloa ruziziensis genotypes for green biomass yield

  • Davi Henrique Lima Teixeira Universidade Federal Rural da Amazonia
  • Flávia Maria Avelar Gonçalves Universidade Federal de Lavras
  • José Airton Rodrigues Nunes Universidade Federal de Lavras http://orcid.org/0000-0002-6260-7890
  • Fausto Souza Sobrinho Empresa Brasileira de Pesquisa Agropecuária
  • Flávio Rodrigo Gandolfi Benites Empresa Brasileira de Pesquisa Agropecuaria
  • Kaio Olímpio das Graças Dias Universidade de São Paulo

Abstract

The breeding program of Urochloa ruziziensis evaluates many genotypes in initial phases. Evaluations through grades might make the selection less costly. The aim of this study was to verify the efficiency of visual selection for green biomass yield in relation to different selection strategies, such as mass selection by phenotypic mean, BLUP (Best Linear Unbiased Prediction) and at random. For this purpose, 2,309 regular genotypes were evaluated in an augmented block design in two cuts. The evaluators gave grades for plant vigor, and later, the plots were measured for green biomass yield. The coincidences of the selected genotypes were estimated by different selection strategies. Then, 254 clones of the genotypes selected in different strategies were evaluated in a clonal test in a triple lattice design in four cuts. The statistical analyses were performed in SAS using the Mixed procedure. The regular genotype level and clone-mean basis heritabilities were 31.16 and 62.91%, respectively, for green mass yield. The expected selection gains were 21.09% (visual), 25.43% (phenotypic mean), and 27.5% (BLUP). Moreover, the realized heritabilities for these strategies were 15.58, 11.87, and 15.86%, respectively, which might be associated with genotype by environment interaction. Therefore, the visual selection could be a useful strategy in initial phases of a U. ruziziensis breeding program because the efficiency was moderate to high in relation to phenotypic mean and BLUP.

Downloads

Download data is not yet available.

References

Abreu, G. B., Ramalho, M. A. P., Toledo, F. H. R. B., & Souza, J. C. (2010). Strategies to improve mass selection in maize. Maydica, 55(3/4), 219-225.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.

Basso, K. C., Resende, R. M. S., Valle, C. B., Gonçalves, M. C., & Lempp, B. (2009). Avaliação de acessos de Brachiaria brizantha Stapf e estimativas de parâmetros genéticos para caracteres agronômicos. Acta Scientiarum. Agronomy, 31(1), 17-22. DOI: 10.4025/actasciagron.v31i1.6605

Bitencourt, G. A., Chiari, L., Laura, V. A., Valle, C. B., Jank, L., & Moro, J. R. (2011). Aluminum tolerance on genotypes of signal grass. Revista Brasileira de Zootecnia, 40(2), 245-250. DOI: 10.1590/S1516-35982011000200003

Burnham, K. P., & Anderson, D. R. (2003). Model selection and multimoldel inference: a practical information - theoretic approach. New York, US: Springer.

Casler, M. D. (2010). Changes in mean and genetic variance during two cycles of within-family selection in switchgrass. BioEnergy Research, 3(1), 47-54. DOI: 10.1007/s12155-009-9071-9

Casler, M. D., & Vogel, K. P. (2014). Selection for biomass yield in upland, lowland, and hybrid switchgrass. Crop Science, 54(2), 626-636. DOI: 10.2135/cropsci2013.04.0239

Cutrim, V. A., Ramalho, M. A. P., & Carvalho, A. M. (1997). Eficiência da seleção visual na produtividade de arroz (Oryza sativa L) irrigado. Pesquisa Agropecuária Brasileira, 32(6), 601-606.

Elias, A. A., Robbins, K. R., Doerge, R. W., & Tuinstra, M. R. (2016). Half a century of studying genotype by environment interactions in plant breeding experiments. Crop Science, 56(5), 2090–2105. DOI: 10.2135/cropsci2015.01.0061

Euclides, V. P. B., Valle, C. B., Macedo, M. C. M., Almeida, R. G., Montagner, D. B., & Barbosa, R. A. (2010). Brazilian scientific progress in pasture research during the first decade of XXI century. Revista Brasileira de Zootecnia, 39(supl. spe.), 151-168. DOI: 10.1590/S1516-35982010001300018

Federer, W. T. (1956). Augmented (hoonuiaku) design. Hawaiiwan Planters' Record, 55(2), 191-208.

Figueiredo, U. J., Nunes, J. A. R., & Valle, C. B. (2012). Estimation of genetic parameters and selection of Brachiaria humidicola progenies using a selection index. Crop Breeding and Applied Biotechnology, 12(4), 237-244. DOI: 10.1590/S1984-70332012000400002

Hamblin, J. E., & Zimmermann, M. J. O. (1986). Breeding common bean for yield in mixtures. Plant Breeding Reviews, 4(1), 245-272.

Lopes, F. C. F., Paciullo, D. S. C., Motta, E. F., Pereira, J. C., Azambuja, A. A., Motta, A. C. S., ... Duque, A. C. A. (2010). Composição química e digestibilidade ruminal in situ da forragem de quatro espécies do gênero Brachiaria. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 62(4), 883-888. DOI: 10.1590/S0102-09352010000400018

Martins, C. E., Miguel, P. S. B., Rocha, W. S. D., Souza Sobrinho, F., Gomes, F. T., & Oliveira, A. V. (2011). Seleção de genótipos de Brachiaria ruziziensis quanto à tolerância ao alumínio em solução I: resposta a diferentes concentrações de alumínio e valores de pH em solução nutritiva. Revista de Ciências Agrárias, 34(1), 154-162.

Mateus, R. G., Barrios, S. C. L., Valle, C. B., Valério, J. R., Torres, F. Z. V., Martins, L. B., & Amaral, P. N. C. (2015). Genetic parameters and selection of Brachiaria decumbens hybrids for agronomic traits and resistance to spittlebugs. Crop Breeding and Applied Biotechnology, 15(4), 227-234. DOI: 10.1590/1984-70332015v15n4a39

Ordás, B., Caicedo, M., Romay, M. C., Revilla, P., & Ordás, A. (2012). Effect of visual selection during the development of inbred lines of maize. Crop Science, 52(6), 2538-2545. DOI: 10.2135/cropsci2012.01.0050

Pessoa-Filho, M., Azevedo, A. L. S., Souza Sobrinho, F., Gouvea, E. G., Martins, M. A., & Ferreira, M. E. (2015). Genetic diversity and structure of ruzigrass germplasm collected in Africa and Brasil. Crop Science, 55(6), 2736-2745. DOI: 10.2135/cropsci2015.02.0096

Peternelli, L. A., Souza, E. F. M., Barbosa, M. H. P., & Carvalho, M. P. (2009). Augmented designs in plant breeding under resource constrain. Ciência Rural, 39(9), 2425-2430. DOI: 10.1590/S0103-84782009005000209

Piepho, H. P., Mohring, J., Melchinger, A. E., & Büchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 161(1), 209-228. DOI: 10.1007/s10681-007-9449-8

Prado, P. E. R., Gonçalves, F. M. A., Ramalho, M. A. P., Nunes, J. A. R., Reis, C. A. F., & Lima, J. L. (2013). Modeling strategies for the analysis of experiments in augmented block design in clonal tests of Eucaliptus spp. Ciência Florestal, 23(3), 345-355. DOI: 10.5902/1980509810546

Resende, M. D. V. (2002). Genética biométrica e estatística no melhoramento de plantas perenes. Brasília, DF: Embrapa Informação Tecnológica.

Resende, M. D. V., & Duarte, J. B. (2007). Precision and quality control in variety trials. Pesquisa Agropecuária Tropical, 37(3), 182-194.

Resende, R. M. S., Resende, M. D. V., Valle, C. B., Jank, L., Torres Junior, R. A. A., & Cançado, L. J. (2007). Selection efficiency in Brachiaria hybrids using a posteriori blocking. Crop Breeding and Applied Biotechnology, 7(3), 296-303.

Resende, M. D. V., Ramalho, M. A. P., Guilherme, S. R., & Abreu, A. F. B. (2015). Multigeneration index in the within-progenies bulk method for breeding of self-pollinated plants. Crop Science, 55(3), 1202-1211. DOI: 10.2135/cropsci2014.08.0580

Rodriguez-Álvarez, M. X., Boer, M. P., van Eeuwijk, & Eilers, P. H. C. (2018). Correcting for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics, 1(1), 52-71. DOI: 10.1016/j.spasta.2017.10.003

Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistic and Computing, 2(3), 117-119. DOI: 10.1007/BF01891203

SAS Institute Inc. (2015). SAS/STAT® 14.1 User’s Guide. Cary, NC: SAS Institute Inc.

Silva Filho, J. L. (2013). Optimizing the number of progenies and replications in plant breeding experiments. Crop Breeding and Applied Biotechnology, 13(3), 151-157. DOI: 10.1590/S1984-70332013000300001

Souza Sobrinho, F., Auad, A. M., & Lédo, F. J. S. (2010a). Genetic variability in Brachiaria ruziziensis for resistance to spittlebugs. Crop Breeding and Applied Biotechnology, 10(1), 83-88.

Souza Sobrinho, F., Borges, V., Lédo, F. J. S., & Kopp, M. M. (2010b). Repetibilidade de características agronômicas e número de cortes necessários para seleção de Urochloa ruziziensis. Pesquisa Agropecuária Brasileira, 45(6), 579-584.

Souza Sobrinho, F.; Lédo, F. J. S., & Kopp, M. M. (2011). Estacionalidade e estabilidade de produção de forragem de progênies de Brachiaria ruziziensis. Ciência e Agrotecnologia, 35(4), 685-691.

Timbó, A. L. O., Souza, P. N. C., Pereira, R. C., Nunes, J. D., Pinto, J. E. B. P., Souza Sobrinho, F., & Davide, L. C. (2014). Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). Revista Brasileira de Zootecnia, 43(3), 127-131. DOI: 10.1590/S1516-35982014000300004

Walter, A., Studer, B., & Kölliker, R. (2012). Advanced phenotyping offers opportunities for improved breeding of forage and turf species. Annals of Botany, 110(6), 1271-1279. DOI: 10.1093/aob/mcs026

Published
2019-11-20
How to Cite
Teixeira, D. H. L., Gonçalves, F. M. A., Nunes, J. A. R., Souza Sobrinho, F., Benites, F. R. G., & Dias, K. O. das G. (2019). Visual selection of Urochloa ruziziensis genotypes for green biomass yield. Acta Scientiarum. Agronomy, 42(1), e42444. https://doi.org/10.4025/actasciagron.v42i1.42444
Section
Genetics and Plant Breeding

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus