Physical and chemical characterization and bioactive compounds from blackberry under calcium chloride application
Abstract
Calcium chloride application on fruits maintains the firmness of fruits, decreases storage breakdown and rot, extends shelf-life, and increases vitamin C and calcium content. Blackberries have low post-harvest durability due to the intrinsic characteristics of their fruits, mainly the high respiratory rate and low firmness, which causes problems in the production chain of fresh fruits. The current study aimed to evaluate the effects of pre-harvest application of calcium chloride on the fruits of ‘Tupy’ blackberry (Rubus spp.). A randomized block design for a factorial scheme was used, i.e. calcium chloride concentrations (0, 1.5, 3, and 4.5%) and number of applications (1, 2, and 3). Multiple applications occurred between 5-day intervals. The results showed that the calcium content in the fruits increased with a single application of 2.2%, but a decrease in mass loss was observed with a 4.5% application. The results also indicated great firmness and ascorbic acid content of fruits of ‘Tupy’ blackberry, in addition to the significant increase in fruit size and mass. However, in general, the content of soluble solids, sugars, antioxidant activity and total polyphenols decreased.
Downloads
References
Aghdam, M. S., Hassanpouraghdam, M. B., Paliyath, G., & Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 144(144), 102–115. DOI: 10.1016/j.scienta.2012.07.007
Al-Eryani-Raqeeb, A., Mahmud, T. M. M., Syed Omar, S. R., Mohamed Zaki, A. R., & Al-Eryani, A. R. (2009). Effects of calcium and chitosan treatments on controlling anthracnose and postharvest quality of papaya (Carica papaya L.). International Journal of Agricultural Research, 4(2), 53-68. DOI: 10.3923/ijar.2009.53.68
Ali, I., Abbasi, N. A., & Hafiz, I. A. (2014). Physiological response and quality attributes of peach fruit cv. Florida King as affected by different treatments of calcium chloride, putrescine and salicylic acid. Pakistan Journal of Agricultural Sciences, 51(1), 33-39.
Angeletti, P., Castagnasso, H., Miceli, E., Terminiello, L., Concellón, A., Chaves, A., & Vicente, A. R. (2010). Effect of preharvest calcium applications on postharvest quality, softening and cell wall degradation of two blueberry (Vaccinium corymbosum) varieties. Postharvest Biology and Technology, 58(2), 98-103. DOI: 10.1016/j.postharvbio.2010.05.015
Brand-Willians, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebens Mittel Wiss. Tecnology, 28(1), 25-30. DOI: 10.1016/S0023-6438(95)80008-5
Campagnolo, M. A., & Pio, R. (2012). Phenological and yield performance of black and redberry cultivars in western Paraná State. Acta Scientiarum. Agronomy, 34(4), 439-444. DOI: 10.4025/actasciagron.v34i4.15528
Chen, F., Liu, H., Yang, H., Lai, S., Cheng, X., Xin, Y., Yang, B., ... Deng, Y. (2011). Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry, 126(2), 450-459. DOI: 10.1016/j.foodchem.2010.11.009
Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio. Lavras, MG: UFLA.
Conway, W. S., Sams, C. E., Mcguire, R. G., & Kelman, A. (1992). Calcium treatment of apples and potatoes to reduce postharvest decay. Plant Disease, 76(4), 329-334.
Cunha, A. R., & Martins, D. (2009). Climatic classification for the districts of Botucatu and São Manuel, São Paulo. Irriga, 14(1), 1-11. DOI: 10.15809/irriga.2009v14n1p01
Curi, P. N., Pio, R., Moura, P. H. A., Tadeu, M. H., Nogueira, P. V., & Pasqual, M. (2015). Production of blackberry and redberry in Lavras, Minas Gerais, Brazil. Ciência Rural, 45(8), 1368-1374. DOI: 10.1590/0103-8478cr20131572
Danner, M. A., Citadin, I., Sasso, S. A. Z., Zarth, N. A., & Mazaro, S. M. (2009). Sources of calcium applied in the soil and its relationship to the quality of ‘Vênus’ grape. Revista Brasileira de Fruticultura, 31(3), 881-889. DOI: 10.1590/S0100-29452009000300035
Embrapa Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA]. (2006). Sistema brasileiro de classificação de solos. (2a ed.). Rio de Janeiro, RJ: Embrapa.
Ferreira, D. S., Rosso, V. V., & Mercadante, A. Z. (2010). Bioactive compounds of blackberry fruits (Rubus spp.) grown in Brazil. Revista Brasileira de Fruticultura, 32(3), 664-674. DOI: 10.1590/S0100-29452010005000110
Ferreira, L. V., Cocco, C., Gonçalves, M. A., Carvalho, S. F., Picolotto, L., Monte, F., Antunes, L. E. C., & Cantillano, R. F. F. (2013). Efect of aplication of calcium and boron in preharvest quality in postharvest blackberry ‘Tupy’. Revista Iberoamericana de Tecnología Postcosecha, 14(1), 53-58.
Freire, C. J. S. (2007). Nutrição e adubação. In Antunes, L. E. C., & Raseira, M. C. B. (Ed.), Sistema de produção da amoreira-preta (p. 45-54). Pelotas, RS: Embrapa Clima Temperado.
Guedes, M. N. S., Abreu, C. M. P., Maro, L. A. C., Pio, R., Abreu, J. R., & Oliveira, J. O. (2013). Chemical characterization and mineral levels in the fruits of blackberry cultivars grown in a tropical climate at an elevation. Acta Scientiarum. Agronomy, 35(2), 191-196. DOI: 10.4025/actasciagron.v35i2.16630
Huang, R. H., Liu, J. H., Lu, Y. M., & Xia, R. X. (2007). Effect of salicylic acid on the antioxidante system in the pulp of Cara cara navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47(2), 168-175. DOI: 10.1016/j.postharvbio.2007.06.018
Instituto Adolfo Lutz [IAL]. (2005). Métodos físicoquímicos para análise de alimentos. (4a ed.). São Paulo, SP: IAL.
Ministério da Agricultura, Pecuária e Abastecimento [MAPA]. (1986). Ácido ascórbico (Método de Tillmans modificado). Brasília, DF: Diário Oficial da República Federativa do Brasil.
Nelson, N. (1944). A photometric adaptation of somogi method for determination of glicose. Journal of Biological Chemistry, 153(3), 375-380.
Omaima, M. H., & Karima, H. E. H. (2007). Quality improvement and storability of apple cv. Anna by pré-harvest applications of boric acid and calcium chloride. Research Journal of Agriculture and Biological Sciences, 3(3), 176-183.
Ortiz, A., Graell, J., & Lara, I. (2011). Cell wall-modifying enzymes and firmness loss in ripening ‘Golden Reinders’ apples: A comparison between calcium dips and ULO storage. Food Chemistry, 128(4), 1072-1079. DOI: 10.1016/j.foodchem.2011.04.016
Poovaiah, B. W. (1986). Role of calcium in prolonging storage life of fruits and vegetables. Food Technology, 40(1), 86-89.
Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Danyanova, B., Sabatini, A. G., ... Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochemical Analysis, 15(4), 235-240. DOI: 10.1002/pca.777
Segantini, D. M. Falagán, N., Leonel, S., Modesto, J. H., Takata, W. H. S., & Artés, F. (2015). Chemical quality parameters and bioactive compound content of brazilian berries. Ciência e Tecnologia de Alimentos, 35(3), 502-508. DOI: 10.1590/1678-457X.6726
Silva, M. B., Rodrigues, L. F. O. S., Rossi, T. C., Vieira, M. C. S., Minatel, I. O., & Lima, G. P. P. (2016). Effects of boiling and oil or vinegar on pickled Jurubeba (Solanum paniculatum L.) fruit. African Journal of Biotechnology, 15(6), 125-133. DOI: 10.5897/AJB2015.15077
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3), 337-354. DOI: 10.1016/S0034-4257(02)00010-X
Souza, A. V., Rodrigues, R. J., Gomes, E. P., Gomes, G. P., & Vieites, R. L. (2015). Caracterização bromatológica de frutos e geleias de amora-preta. Revista Brasileira de Fruticultura, 37(1), 13-19. DOI: 10.1590/0100-2945-037/14
Souza, A. V., Vieites, R. L., Gomes, E. P., & Vieira, M. R. S. (2018). Biochemical characterization of blackberry fruit (Rubus sp) and jellies. Australian Journal of Crop Science, 12(4), 624-630. DOI: 10.21475/ajcs.18.12.04.pne933
Souza, V. R., Pereira, P. A. P., Silva, T. L. T., Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156(2014), 362-368. DOI: 10.1016/j.foodchem.2014.01.125
Swain, T., & Hills, W. E. (1959). The phenolic constituents of Prunus persica domestic: the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63-68.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Plant Physiology (6th ed.). Porto Alegre, RS: Artmed.
Vicente, A. R., Ortugno, C., Rosli, H., Powell, A. L. T., Greve, C. L., & Labavitch, J. M. (2007). Temporal sequence of cell wall disassembly events in developing fruits. Analysis of blueberry (Vaccinium species). Journal of Agricultural and Food Chemistry, 55(10), 4125-4130. DOI: 10.1021/jf063548j
White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487-511. DOI: 10.1093/aob/mcg164
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.