Heavy metal concentrations and ecological risk assessment of the suspended sediments of a multi-contaminated Brazilian watershed

  • Yuri Jacques Agra Bezerra da Silva Universidade Federal do Piaui http://orcid.org/0000-0001-6865-7146
  • José Ramon Barros Cantalice Universidade Federal Rural de Pernambuco
  • Vijay Pal Singh Texas A&M University
  • Clístenes Williams Araújo do Nascimento Universidade Federal Rural de Pernambuco
  • Bradford Paul Wilcox Texas A&M University
  • Ygor Jacques Agra Bezerra da Silva Universidade Federal Rural de Pernambuco

Abstract

Metal concentrations in suspended sediments of one of the most polluted rivers in Brazil were measured. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma while Hg and As were analyzed with hydride generation flow injection atomic absorption spectroscopy. Contamination of As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn was assessed using pollution indices, ecological risk assessment, statistical multivariate techniques and comparison with sediment quality guidelines. Suspended sediments of the upstream portion of the Ipojuca River are moderately contaminated, especially with Mn and As. On the other hand, sediments of the downstream section are highly contaminated, mainly with Zn, Pb, and As. Furthermore, the mean Ei (potential ecological risk) values of Pb and As showed considerable ecological risk in the downstream cross section. The comparison of our data with sediment guideline values indicated that the concentrations of Mn and Pb in the upstream section of the Ipojuca River pose a risk to sediment-dwelling organisms, while Pb and Zn are the metals of concern in the downstream section.

Downloads

Download data is not yet available.

References

Adamo, P., Arienzo, M., Imperato, M., Naimo, D., Nardi, G., & Stanzione, D. (2005). Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 61(6), 800-809. DOI: 10.1016/j.chemosphere.2005.04.001

Andersson, P. S., Purcell, D., Walsenburg, G. J., & Ingra, J. (1998). Particle transport of 234U–238U in the Kalix River and in the Baltic Sea. Geochimica et Cosmochimica Acta, 62(3), 385-392. DOI: 10.1016/S0016-7037(97)00342-6

Barros, A. M. L., Sobral, M. C., & Gunkel, G. (2013). Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil. Water Science & Technology, 68(2), 357–365. DOI: 10.2166/wst.2013.086

Canadian Council of Ministers of the Environment [CCME]. (1995). Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life (EPC- 98E). Ottawa, CA: The Council.

Companhia Pernambucana do Meio Ambiente [CPRH]. (2003). Diagnóstico Socioambiental do Litoral Sul de Pernambuco. Recife, PE: CPRH.

Conselho Nacional do Meio Ambiente [CONAMA]. (2012). Estabelece as diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional. Resolução Nº 454, de 01 de novembro. Retrieved on Nov. 3, 2013 from http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=693.pdf

Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology, 12(4), 335-353. DOI: 10.1007/s11157-013-9315-1

Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA]. (2006). Sistema brasileiro de classificação de solos (2a ed.). Rio de Janeiro, RJ: Embrapa Solos.

Garcia, C. A. B., Passos, E. A., & Alves, J. P. H. (2011). Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM–ERL predictions. Environmental Monitoring and Assessment, 181(1-4), 385–397. DOI: 10.1007/s10661-010-1836-2

Gunkel, G., Kosmol, J., Sobral, M., Rohn, H., Montenegro, S., & Aureliano, J. (2007). Sugar cane industry as a source of water pollution – case study on the situation in Ipojuca River, Pernambuco, Brazil. Water, Air, & Soil Pollution, 180(1-4), 261-269. DOI: 10.1007/s11270-006-9268-x.

Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. DOI: 10.1016/0043-1354(80)90143-8

Hilton, J., Davison, W., & Ochsenbein, U. (1985). A mathematical model for analysis of sediment coke data. Chemical Geology, 48(1-4), 281-291.

Horowitz, A. J. (2009). Monitoring suspended sediments and associated chemical constituents in urban environments: lessons from the city of Atlanta, Georgia, USA Water Quality Monitoring Program. Journal of Soils and Sediments, 9(4), 342-363. DOI: 10.1007/s11368-009-0092-y

Krčmová, K., Robertson, D., Cvecková, V., & Rapant, S. (2009). Road-deposited sediment, soil and precipitation (RDS) in Bratislava, Slovakia: compositional and spatial assessment of contamination. Journal of Soils and Sediments, 9(4), 304-316. DOI: 10.1007/s11368-009-0097-6.

Lim, W. Y., Aris, A. Z., & Ismail, T. H. T. (2013). Spatial geochemical distribution and sources of heavy metals in the sediment of Langat River, Western Peninsular Malaysia. Environmental Forensics, 14(2), 133-145. DOI: 10.1080/15275922.2013.781078

MacDonald, D. D., Ingeroll, C. G., Smorong, D. E., Lindskoog, R. A., Sloane, G., & Biernacki, T. (2003). Development and evaluation of numerical sediment quality assessment guidelines for Florida inland waters (Technical Report). Miami, FL: Florida Department of Environmental Protection.

Martin, J. M., & Meybeck, M. (1979). Elemental mass balance of material carried by major world rivers. Marine Chemistry, 7(3), 173-206. DOI: 10.1016/0304-4203(79)90039-2

Martínez, L. L. G., & Poleto, C. (2010). Lead distribution by urban sediments on Impermeable areas of Porto Alegre – RS, Brazil. Journal of Urban and Environmental Engineering, 4(1), 1-8. DOI: 10.4090/juee.2010.v4n1.001008

Morillo, J., Usero, J., & Gracia, I. (2002). Heavy metal fractionation in sediments from the Tinto River (Spain). International Journal of Environmental Analytical Chemistry, 82(4), 245–257. DOI: 10.1080/03067310290009523

Murphy, C.P. (1986). Thin section preparation of soils and sediments. Berkhanmsterd, EN: Academic Publis.

Nasehi, F. Hassani, A. H., Monavvari, M., Karbassi, A. R., & Khorasani, N. (2013). Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River. Environmental Monitoring and Assessment, 185(1), 197–203. DOI: 10.1007/s10661-012-2543-y

National Institute of Standards and Technology [NIST]. (2002, 18 january). Standard Reference Materials-SRM 2709, 2710 and 2711 (Addendum Issue Date: 18 july 2003 ). Gaithersburg, MD.

Ponter, C., Ingri, J., & Boström, K. (1992). Geochemistry of manganese in the Kalix River, northern Sweden. Geochimica et Cosmochimica Acta, 56(4), 1485-1494. DOI: 10.1016/0016-7037(92)90218-8

Sakan, S. M., Djordjevic, D. S., Manojlovic, D. D., & Predrag, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90(11), 3382-3390. DOI: 10.1016/j.jenvman.2009.05.013

Secretaria de Recursos Hídricos [SRH]. (2010). Plano hidroambiental da bacia hidrográfica do rio Ipojuca: Tomo I - Diagnóstico Hidroambiental. Volume 1, 2 e 3. Recife, PE: Secretaria de Recursos Hídricos do Estado de Pernambuco.

Silva, Y. J. A. B, Nascimento, C. W. A., Cantalice, J. R. B., Silva, Y. J. A. B, & Cruz, C. M. C. A. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment, 187(9), 558. DOI: 10.1007/s10661-015-4782-1

Silva, F. B. V., Nascimento, C. W. A., Araújo, P. R. M., Silva, L. H. V., & Silva, R. F. (2016). Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis. Environmental Monitoring and Assessment, 188(8), 457. DOI: 10.1007/s10661-016-5409-x

Silva, Y. J. A. B., Cantalice, J. R. B., Nascimento, C. W. A., Singh, V. P., Silva, Y. J. A. B., ... Guerra, S. M. S. (2017). Bedload as an indicator of heavy metal contamination in a Brazilian anthropized watershed. Catena, 153, 106–113. DOI: 10.1016/j.catena.2017.02.004

Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International, 26(5-6), 297-301. DOI: 10.1016/S0160-4120(01)00003-4

Thuong, N. T., Yoneda, M., Ikegami, M., & Takakura, M. (2013). Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches. Environmental Monitoring and Assessment, 185(10), 8065-8075. DOI: 10.1007/s10661-013-3155-x

Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoländer Meeresun, 33(1-4), 566-575. DOI: 10.1007/BF02414780

United States, Department of Agriculture [USDA], Natural Resources Conservation Service. (2010). Keys to soil taxonomy. Soil Survey Staff (11th ed.). Washington, DC. Retrieved on March 15, 2018 from http://soils.usda.gov/technical/classification/tax_keys/

United States Environmental Protection Agency [USEPA]. (1998). Method 3051a - microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC: USEPA

Varejão, E. V. V., Bellato, C. R., Fontes, M. P. F., & Mello, J. W. V. (2011). Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil. Environmental Monitoring and Assessment, 172(1-4), 631-642. DOI: 10.1007/s10661-010-1361-3

Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355-364. DOI: 10.1016/j.jhazmat.2011.08.051

Varol, M., & Şen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediment of the upper Tigris River, Turkey. Catena, 92(1), 1-10. DOI: 10.1016/j.jhazmat.2011.08.051

Viers, J., Dupré, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407(2), 853-868. DOI: 10.1016/j.scitotenv.2008.09.053

Weber, P., Behr, E. R., Knorr, C. L., Vendruscolo, D. S., Flores, E. M. M., Dressler, V. L., & Baldisserotto, B. (2013). Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchemical Journal, 106, 61-66. DOI: 10.1016/j.microc.2012.05.004

Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142(1), 1-16. DOI: 10.1016/j.envpol.2005.09.004

Xiao, R., Bai, J., Huang, L., Zhang, H., Cui, B., & Liu, X. (2013). Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology, 22(10), 1564-1575. DOI: 10.1007/s10646-013-1142-1

Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585. DOI: 10.1016/j.envpol.2011.06.011

Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., & Liu, X. (2017). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 184, 278–288. DOI: 10.1016/j.chemosphere.2017.05.155

Published
2019-03-13
How to Cite
Silva, Y. J. A. B. da, Cantalice, J. R. B., Singh, V. P., Nascimento, C. W. A. do, Wilcox, B. P., & Silva, Y. J. A. B. da. (2019). Heavy metal concentrations and ecological risk assessment of the suspended sediments of a multi-contaminated Brazilian watershed. Acta Scientiarum. Agronomy, 41(1), e42620. https://doi.org/10.4025/actasciagron.v41i1.42620

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus