Optimum environment number for the national sunflower trials network

  • Luiza Barbosa Matta Universidade Federal de Viçosa
  • Cosme Damião Cruz Universidade Federal de Viçosa https://orcid.org/0000-0003-3513-3391
  • Iara Gonçalves Santos Universidade Federal de Viçosa
  • Claudio Guilherme Portela Carvalho Empresa Brasileira de Pesquisa Agropecuária
  • Aluisio Brigido Borba Filho Universidade Federal de Mato Grosso
  • Alberto Donizete Alves Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais
Keywords: Helianthus annuus L.; environmental stratification; experimental network.

Abstract

This work aimed to present the optimum environment number methodology and propose the optimization of the National Sunflower Trials Network, by means of the environments exclusion that do not provide loss of the environmental variability already established. Grain and oil yield data of 16 genotypes evaluated at 16 environments of the National Sunflower Trials Network, obtained from trials conducted out-of-season in 2012 and 2013 were used. An analysis was proposed to establish the optimum environment number for genotypes evaluation, based on genotype performance in the various environmental combinations. The removal or maintenance of environments in the experimental network was dynamic, since different environmental combinations impacted the representativeness of the complete network in a different way. This analysis also provides a graphical view of the impact of the environment removal from the network. Once detected points below the established correlation, the researcher could infer about the network minimum environment number and, suggest through consistent information of several testing years, the environment exclusion.

Downloads

Download data is not yet available.

References

Allard, R. W., & Bradshaw, A. D. (1964). Implications of genotype-environmental interactions in applied plant breeding. Crop Science, 4(5), 503-508.

Cruz, C. D. (2013). GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35(3), 271-276. DOI: 10.4025/actasciagron.v35i3.21251

Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. (2012). Modelos biométricos aplicados ao melhoramento genético. 4a ed. Viçosa, MG: Editora UFV.

Cruz, C. D., & Castoldi, F. L. (1991). Decomposição da interação genótipos x ambientes em partes simples e complexa. Ceres, 38(219), 422-430.

Grunvald, A. K., Carvalho, C. G. P., Oliveira, A. C. B., Pires, J. L. F., Carvalho, H. W. L., & Oliveira I. R. (2014) Adaptabilidade e estabilidade de híbridos de girassol convencional e alto oleico na Região Sul do Brasil. Revista Ciência Agrária, 57(3), 217-223. DOI: 10.4322/rca.ao1270

Jocic, S., Miladinovic, D., & Kaya, Y. (2015). Breeding and Genetics of Sunflower. In: E. Martínez-Force, N. T. Dunford, & J. J. Ans Salas (Eds.), Sunflower: chemistry, production, processing, and utilization (p. 1-27). Illinois: AOCS Press.

Kaya Y., Jocic S., & Miladinovic D. (2012) Sunflower. In: S. Gupta (Ed.), Technological Innovations in Major World Oil Crops (p. 85-129). New York: Springer.

Leite, R. M. V. B. de C., & Borba Filho, A. B. (2014). Ata - XX Reunião Nacional de Pesquisa de Girassol, Londrina, PR: Embrapa Soja.

Leite, R. M. V. B. de C., Brighenti, A. M., & Castro, C. (2005). Girassol no Brasil, Londrina, PR: Embrapa Soja.

Lin, C. S., & Binns, M. R. A. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68(1), 193-198. DOI: 10.4141/cjps88-018

Nobre, D. A. C., Resende, J. C. F., Brandão Junior, D. S., Costa, C. A., & Morais, D. L. B. (2012). Desempenho agronômico de genótipos de girassol no norte de Minas Gerais. Revista Agro@mbiente On-line, 6(2), 140-147. DOI: 10.18227/1982-8470ragro.v6i2.781

Paniego, N., Heinz, R., Fernandez, P., Talia, P., Nishinakamasu, V., & Esteban Hopp, H. (2007). Sunflower. In: C. Kole (Ed.). Oilseeds: Genome Mapping and Molecular Breeding in Plants (p. 153-177). Berlin: Springer.

Porto, W. S., Carvalho, C. G. P., Pinto, R. J. B., Oliveira, M. F., & Oliveira, A. C. B. (2008). Evaluation of sunflower cultivar for central Brazil. Scientia Agricola, 65(2), 139-144. DOI: 10.1590/S0103-90162008000200005

Porto, W. S., Carvalho, C. G. P., Pinto, R. J. B., Oliveira, M. F., & Oliveira, A. C. B. (2009). Adaptabilidade e estabilidade de genótipos de girassol para a região subtropical do Brasil. Ciência Rural, 39(9), 2452-2459. DOI: 10.1590/S0103-84782009005000207

Ribeiro, M. F. S., Daros, E., Caires, E. F., & Vasconcellos, M. E. C. (2011). Desempenho agronômico da cultura do girassol em diferentes condições edafoclimáticas do Sudeste paranaense. Bragantia, 70(3), 550-560. DOI: 10.1590/S0006-87052011000300010

Published
2019-09-20
How to Cite
Matta, L. B., Cruz, C. D., Santos, I. G., Carvalho, C. G. P., Borba Filho, A. B., & Alves, A. D. (2019). Optimum environment number for the national sunflower trials network. Acta Scientiarum. Agronomy, 42(1), e42792. https://doi.org/10.4025/actasciagron.v42i1.42792
Section
Genetics and Plant Breeding

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus