Soil carbon accumulation in cotton production systems in the Brazilian Cerrado

  • Alexandre Cunha de Barcellos Ferreira Empresa Brasileira de Pesquisa Agropecuária https://orcid.org/0000-0003-4612-0131
  • Ana Luiza Dias Coelho Borin Empresa Brasileira de Pesquisa Agropecuária
  • Fernando Mendes Lamas Empresa Brasileira de Pesquisa Agropecuária
  • Julio Cesar Bogiani Empresa Brasileira de Pesquisa Agropecuária
  • Mellissa Ananias Soler da Silva Empresa Brasileira de Pesquisa Agropecuária
  • Joao Luis da Silva Filho Empresa Brasileira de Pesquisa Agropecuária
  • Luiz Alberto Staut Empresa Brasileira de Pesquisa Agropecuária
Keywords: Gossypium hirsutum, no-tillage, conventional tillage, nitrogen, carbon stock

Abstract

Sustainable production systems, such as the no-tillage system (NTS), have a tendency to increase organic carbon in the soil. However, in Brazilian cotton production, the conventional tillage system (CTS) is predominant, and long-term studies on cotton crop under the NTS are scarce. The present study aimed to evaluate the effect of soil management and crop rotation systems on the cotton fiber yield as well as on the carbon and nitrogen accumulation in the soil. This study was conducted in the Brazilian savanna over 9 years and consisted of the following four treatments with different soil management systems: the NTS and CTS with the succession or rotation of crops (cotton, soybean, maize, and Urochloa ruziziensis). The NTS increased the carbon content by 55% in the top 5 cm after 9 years and increased the carbon stock by approximately 20% at a depth of up to 40 cm. Crop rotation with soybean, maize, and cotton was insufficient to increase the carbon stock in the soil under the CTS. In addition to increasing the fiber yield, the cotton crop in a NTS rotated with soybean + U. ruziziensis and with maize + U. ruziziensis increases the carbon stock and nitrogen content in soil.

Downloads

Download data is not yet available.

References

Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In: Klute, A. (Ed.). Methods of soil analysis: Physical and Mineralogical Methods. Part 1. 2nd ed. Agronomy Society of America and Soil Science Society of America, Madison, pp. 363-375.

Boddey, R. M., Jantalia, C. P., Conceição, P. C., Zanatta, J. A., Bayer, C., Mielniczuk, J., ... Urquiaga, S. (2010). Carbon accumulation at depth in Ferralsols under zero‐till subtropical agriculture. Global Change Biology, 16(2), 784–795. doi:10.1111/j.1365-2486.2009.02020.x

Ceccon, G., Staut, L. A., Sagrilo, E., Machado, L. A. Z., Nunes, D. P., & Alves, V. B. (2013). Legumes and forage species sole or intercropped with corn in soybean-corn succession in midwestern Brazil. Revista Brasileira de Ciência do Solo, 37(1), 204–212. doi:10.1590/S0100-06832013000100021

Corazza, E. J., Silva, J. D., Resck, D. V. S., & Gomes, A. C. (1999). Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação à vegetação de cerrado. Revista Brasileira de Ciência do Solo, 23(2), 425–432.

Corbeels, M., Marchão, R. L., Siqueira, N. M., Ferreira, E. G., Madari, B. E., Scopel, E., & Brito, O. R. (2016). Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Scientific reports, 6, 21450. doi:10.1038/srep21450

Dignac, M. F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., … Basile-Doelsch I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. a review. Agronomy for sustainable development, 37(2), 14. doi:10.1007/s13593-017-0421-2

FAO-UNESCO (1988). Soil Map of the World, Revised Legend (with Corrections and Updates) World Soil Resources Report 60, FAO, Rome.

Food and Agriculture Organization of the United Nations - FAO (2018) Principles of no-till. http://www.fao.org/ag/Ca/6c.html. Accessed 17 January 2018.

Gan, Y., Liang, C., Wang, X., & McConkey, B. (2011). Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Research, 122(3), 199–206. doi:10.1016/j.fcr.2011.03.020

Gregory, A. S., Dungait, J. A. J., Watts, C. W., Bol, R., Dixon, E. R., White, R. P., & Whitmore, A. P. (2016). Long-term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system. European journal of soil science, 67(4),421–430. doi:10.1111/ejss.12359

Heaton, L., Fullen, M. A., & Bhattacharyya, R. (2016). Critical Analysis of the van Bemmelen Conversion Factor used to Convert Soil Organic Matter Data to Soil Organic Carbon Data: Comparative Analyses in a UK Loamy Sand Soil. Espaço Aberto, 6(1), 35–44. https://revistas.ufrj.br/index.php/EspacoAberto/article/view/5244/3852. Accessed 17 January 2018.

Lal, R. (2016). Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. Journal of Soil and Water Conservation, 71(1), 20A–25A. doi:10.2489/jswc.71.1.20A

Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79–86. doi:10.1016/j.cosust.2015.09.002

Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, ecosystems & environment, 139(1–2), 224–231. doi:10.1016/j.agee.2010.08.006

Marchao, R. L., Becquer, T., Brunet, D., Balbino, L. C., Vilela, L., & Brossard, M. (2009). Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop–livestock management systems. Soil and Tillage Research, 103(2), 442–450 doi:10.1016/j.still.2008.11.002

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., …, Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. doi:10.1016/j.geoderma.2017.01.002

Minasny, B., Arrouays, D., McBratney, A. B., Angers, D. A., Chambers, A., Chaplot, V., & Paustian, K. (2018). Rejoinder to Comments on Minasny et al., 2017 Soil carbon 4 per mille Geoderma 292, 59-86. Geoderma 309, 124–129. doi:10.1016/j.geoderma.2017.05.026

Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In Sparks, D. L, Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., ..., Sumner, M. E. (Eds.) Methods of soil analysis. Part 3. Chemical methods. Agronomy Society of America and Soil Science Society of America, Madison, 961–1010.

Ogle, S. M., Swan, A., & Paustian, K. (2012). No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems & Environment, 149, 37–49. doi:10.1016/j.agee.2011.12.010

Pacheco, L. P., Monteiro, M. M. S., Petter, F. A., Nóbrega, J. C. A., & Santos, A. S. (2017). Biomass and nutrient cycling by cover crops in brazilian cerrado in the state of Piaui. Revista Caatinga, 30(1), 13–23. doi:10.1590/1983-21252017v30n102rc

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49–57. doi:10.1038/nature17174

Piccoli, I., Chiarini, F., Carletti, P., Furlan, L., Lazzaro, B., Nardi, S., …, Morari, F. (2016). Disentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North-Eastern Italy. Agriculture, Ecosystems & Environment, 230, 68–78. doi:10.1016/j.agee.2016.05.035

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Chang, 4(8), 678–683. doi:10.1038/nclimate2292

Salton, J. C., Mercante, F. M., Tomazi, M., Zanatta, J. A., Concenço, G., Silva, W. M., & Retore, M. (2014). Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agriculture, Ecosystems & Environment,190:70–79. doi:10.1038/nature1717410.1016/j.agee.2013.09.023

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., ..., Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos. 3ª ed. Embrapa, Brasília.

Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155–176.

Souza, E. F. C., Fernandes, A. M., Souza-Schlick, G. D., & Rosolem, C. A. (2014). Early growth of common bean cropped over ruzigrass residues. Planta Daninha 32(4), 775–781. doi:10.1590/S0100-83582014000400012

Srinivasarao, C., Lal, R., Kundu, S., Babu, M. P, Venkateswarlu, B., & Singh, A. K. (2014). Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Science of The Total Environment, 487, 587–603. doi:10.1016/j.scitotenv.2013.10.006

Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). Washington, D.C.: USDA-Natural Resources Conservation Service.

Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X., & Wu, F. (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific reports, 6, 19895. doi:10.1038/srep19895

Published
2019-09-20
How to Cite
Ferreira, A. C. de B., Borin, A. L. D. C., Lamas, F. M., Bogiani, J. C., Silva, M. A. S. da, Silva Filho, J. L. da, & Staut, L. A. (2019). Soil carbon accumulation in cotton production systems in the Brazilian Cerrado. Acta Scientiarum. Agronomy, 42(1), e43039. https://doi.org/10.4025/actasciagron.v42i1.43039

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus