Trait selection using procrustes analysis for the study of genetic diversity in Conilon coffee

  • Daiana Salles Pontes Universidade Federal de Viçosa
  • Renato Domiciano Silva Rosado Universidade Federal de Viçosa
  • Cosme Damião Cruz Universidade Federal de Viçosa
  • Moysés Nascimento Universidade Federal de Viçosa
  • Ana Maria Cruz Oliveira Universidade Federal de Viçosa
  • Scott Michael Pensky Louisiana State University

Abstract

Trait selection is occasionally necessary to save money and time, as well as accelerate breeding program processes. This study aimed to propose two criteria to select traits based on a Procrustes analysis that are poorly explored in genetic breeding: Criterion 1 (backward algorithm) and Criterion 2 (exhaustive algorithm). Then, these two criteria were further compared with Jolliffe’s criterion, which has often been used to select traits in genetic diversity studies. Sixteen agronomic traits were considered, and 40 Conilon coffee (Coffea canephora) accessions were evaluated. This study showed that the flexibility in selecting traits by researcher preference, graphical visualization, and Procrustes  statistic through criteria 1 and 2 is a fast and reliable alternative for decision-making. These decisions are based on the removal and addition of traits for phenotyping in studies of Conilon coffee diversity that can be applied to other crops. Other relevant aspects of selection traits criteria were also discussed.

Downloads

Download data is not yet available.

References

Bonomo, P., Cruz, C. D., Viana, J. M. S., Pereira, A. A., Oliveira, V. R., & Carneiro, P. C. S. (2004). Seleção antecipada de progênies de café descendentes de “híbrido de timor” X “catuaí amarelo” e “catuaí vermelho. Acta Scientiarum. Agronomy, 26(1), 91-96. DOI: 10.4025/actasciagron.v26i1.1969

Bramardi, S. J., Bernet, G. P., Asíns, M. J., & Carbonell, E. A. (2005). Simultaneous agronomic and molecular characterization of genotypes via the Generalised Procrustes Analysis. Crop Science, 45(4), 1603-1609. DOI: 10.2135/cropsci2004.0633

Cruz, C. D. (2013). Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271-276. DOI: 10.4025/actasciagron.v35i3.21251

Cruz, C. D. (2016). Genes Software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547-552. DOI: 10.4025/actasciagron.v38i4.32629

Cruz, C. D., Ferreira, F. M., & Pessoni, L. A. (2011). Biometria aplicada ao estudo da diversidade genética. Visconde do Rio Branco, MG: Suprema.

Daboul, A., Ivanovska, T., Bülow, R., Biffar, R., & Cardini, A. (2018). Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets. PLoS ONE, 13(5), e0197675. DOI: 10.1371/journal.pone.0197675

Douglas, T. S. (2004). Image processing for craniofacial landmark identification and measurement: a review of photogrammetry and cephalometry. Computerized Medical Imaging and Graphics, 28(7), 401-409. DOI: 10.1016/j.compmedimag.2004.06.002

Ferrão, R. G. Cruz, C. D., Ferreira, A., Cecon, P. R., Ferrão, M. A. G., Fonseca, A. F. A. D., ... Silva, M. F. D. (2008). Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira, 43(1), 61-69. DOI: 10.1590/S0100-204X2008000100009

García-Peña, M., & Dias, C. T. S. (2009). Análise dos modelos aditivos com interação multiplicativa (AMMI) bivariados. Revista Brasileira de Biometria, 27(4), 586-602.

Guedes, T. A., & Ivanqui, I. L. (1998). Análise procrustes aplicada à seleção de variáveis. Acta Scientiarum. Technology, 20, 505-509. DOI: 10.4025/actascitechnol.v20i0.3073

Jolliffe, I. T. (1972). Discarding variables in a principal component analysis. I: Artificial data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 21(2), 160-173. DOI: 10.2307/2346488

Klingenberg, C. P. (2003). Quantitative genetics of geometric shape: heritability and the pitfalls of the univariate approach. Evolution, 57(1), 191-195. DOI: 10.1111/j.0014-3820.2003.tb00230.x

Krzanowski, W. J. (1987). Selection of variables to preserve multivariate data structure, using principal components. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(1), 22-33. DOI: 10.2307/2347842

Krzanowski, W. J. (1996). A stopping rule for structure-preserving variable selection. Statistics and Computing, 6(1), 51-56. DOI: 10.1007/BF00161573

Liu, S., Zheng, X., Yu, L., Feng, L., Wang, J., Gong, T., ... Xu, R. (2017). Comparison of the genetic structure between in situ and ex situ populations of Dongxiang wild rice (Oryza rufipogon Griff.). Crop Science, 57(6), 3075-3084. DOI: 10.2135/cropsci2017.01.0015

Mauricio, A. A., Palazzo, A. B., Caselato, V. M., & Bolini, H. M. A. (2016). Generalized procrustes analysis and external preference map used to consumer drivers of diet gluten free product. Food and Nutrition Sciences, 7(9), 711-723. DOI: 10.4236/fns.2016.79072

Mingoti, S. A. (2005). Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte, MG: Editora UFMG.

Muleta, K. T., Bulli, P., Zhang, Z., Chen, X., & Pumphrey, M. (2017). Unlocking diversity in germplasm collections via genomic selection: A case study based on quantitative adult plant resistance to stripe rust in spring wheat. The Plant Genome, 10(3), 1-15. DOI: 10.3835/plantgenome2016.12.0124

Munita, C. S., Barroso, L. P., & Oliveira, P. M. (2013). Variable selection study using Procrustes analysis. Open Journal of Archaeometry, 1(e7), 31-35. DOI: 10.4081/arc.2013.e7

Peres-Neto, P. R., & Jackson, D. A. (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 129(2), 169-178. DOI: 10.1007/s004420100720

Oliveira, A. P. V., & Toledo Benassi, M. de (2010). Avaliação sensorial de pudins de chocolate com açúcar e dietéticos por perfil livre. Ciência e Agrotecnologia, 34(1), 146-154. DOI: 10.1590/S1413-70542010000100019

Rodrigues, W. N., Brinate, S. V., Martins, L. D., Colodetti, T. V., & Tomaz, M. A. (2017). Genetic variability and expression of agro-morphological traits among genotypes of Coffea arabica being promoted by supplementary irrigation. Genetics and Molecular Research, 16(2). DOI: 10.4238/gmr16029563

Singh, D. (1981). The relative importance of characters affecting genetic divergence. Indian Journal of Genetics and Plant Breeding, 41(2), 237-245.

Yano, R., Nonaka, S., & Ezura, H. (2018). Melonet-DB, a grand RNA-Seq gene expression atlas in melon (Cucumis melo L.). Plant and Cell Physiology, 59(1), e4-e4. DOI: 10.1093/pcp/pcx193

Yousaf, M. I., Hussain, K., Hussain, S., Ghani, A., Arshad, M., Mumtaz, A., & Hameed, R. A. (2018). Characterization of indigenous and exotic maize hybrids for grain yield and quality traits under heat stress. International journal of Agriculture and Biology, 20(2), 333-337. DOI: 10.17957/IJAB/15.0493

Published
2020-05-27
How to Cite
Pontes, D. S., Rosado, R. D. S., Cruz, C. D., Nascimento, M., Oliveira, A. M. C., & Pensky, S. M. (2020). Trait selection using procrustes analysis for the study of genetic diversity in Conilon coffee. Acta Scientiarum. Agronomy, 42(1), e43195. https://doi.org/10.4025/actasciagron.v42i1.43195
Section
Genetics and Plant Breeding

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus