Changes in potato tuber sugar metabolism in response to natural sprout suppressive compounds

  • Mirelle Nayana de Sousa Santos Universidade Federal de Vicosa
  • Fernanda Ferreira de Araujo Universidade Federal de Vicosa
  • Paula Cristina Carvalho Lima Universidade Federal de Viçosa
  • Lucas Cavalcante da Costa Universidade Federal de Vicosa
  • Fernando Luiz Finger Universidade Federal de Vicosa https://orcid.org/0000-0002-4046-9634
Keywords: Solanum tuberosum L.; clove oil; menthol; reducing sugars.

Abstract

The increased demand for potato by the Brazilian processing industry requires long term refrigerated storage, but after a few months, natural dormancy ends, and sprouts start to grow. Thus, sprout inhibitors are necessary to reduce the rate of growth and allow further storage. The purpose of research described here was to determine the effects clove and menthol essential oils have on the inhibition of sprout growth in non-dormant ‘Asterix’ tubers. Both eugenol and menthol treatments reduced the rate of sprout growth during storage at 8oC for up to 50 days. Eugenol and menthol essential oils diminished the rate of accumulation of reducing sugar, which are responsible for browning of French fries. Color after frying was within acceptable levels when the tubers were treated with eugenol or menthol essential oils.

Downloads

Download data is not yet available.

References

Abbasi, K. S., Masud, T., Ali, S., Khan, S. U., Mahmood, T., & Qayyum, A. (2015). Sugar-starch metabolism and antioxidant potential in potato tubers in response to different antisprouting agents during storage. Potato Research, 58(4), 361-375. DOI: 10.1007/s11540-015-9306-4

Associação Brasileira de Batata [Abba]. (2017). História da batata. Retrieved on December 20, 2017, from http://www.abbabatatabrasileira.com.br/site/historia-da-batata/

Coleman, W. K., Lonergan, G., & Silk, P. (2001). Potato sprout growth suppression by menthone and neomenthol, volatile oil components of Minthostachys, Satureja, Bystropogon, and Mentha species. American Journal of Potato Research, 78(5), 345-354. DOI: 10.1007/BF02884343

Daniels-Lake, B. J., Pruski, K., & Prange, R. K. (2011). Using ethylene gas and chlorprophan potato sprout inhibitors together. Potato Research, 54, 223-236. DOI: 10.1007/s11540-011-9188-z

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method form determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. DOI: 10.1021/ac60111a017

Elbashir, H. A., Ahmed, A. H. R., & Yousif, K. S. (2014). Efficacy of different applications of spearmint oil on storability and processing quality of two potato varieties. Journal of Agri-Food and Applied Sciences, 2(5), 124-133.

Finger, F. L., Santos, M. M. S., Araujo, F. F., Lima, P. C. C., Costa, L. C., França, C. F. M., & Queiroz, M. C. (2018). Action of Essential Oils on Sprouting of Non-Dormant Potato Tubers. Brazilian Archives of Biology and Technology, 61, e18180003. DOI: 10.1590/1678-4324-2018180003

Food and Agriculture Organization of the United Nations [FAOSTAT]. Retrieved on December 20, 2017, from http://www.fao.org/faostat/en/#data

Frazier, M. J., Olsen, N., & Kleinkopf, G. (2004). Organic and alternative methods for potato sprout control is storage. Moscow, RU: University of Idaho Extension. Retrieved on December 2, 2017, from http://www.cals.uidaho.edu/edcomm/pdf/CIS/CIS1120.pdf

Gómez-Castillo, D., Cruz, E., Iguaz, A., Arroqui, C., & Vírsed, P. (2013). Effects of essential oils on sprout suppression and quality of potato cultivars. Postharvest Biology and Technology, 82, 15-21. DOI: 10.1007/s00425-010-1154-5

Gonçalves, C., Rodrigues-Jasso, M. R., Gomes, N., Teixeira, J. A., & Belo, I. (2010). Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods, 2(12), 2046-2048. DOI: 10.1039/c0ay00525h

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2017). Levantamento sistemático da produção. Rio de Janeiro, RJ: IBGE.

Kleinkopf, G., Oberg, N., & Olsen, N. (2003). Sprout inhibition in storage: current status, new chemistries and natural compounds. American Journal of Potato Research, 80(5), 317-327. DOI: 10.1007/BF02854316

Muthoni, J., Kabira, J., Shimelis, H., & Melis, R. (2014). Regulation of potato tuber dormancy: A review. Australian Journal of Crop Science, 8(5), 754-759.

Sistema para Análises Estatísticas e Genéticas [Saeg]. (2007). Sistema para análises estatísticas e genéticas. Versão 9.1. Viçosa, MG: Fundação Arthur Bernardes.

Sowokinos, J. R. (2001). Biochemical and molecular control of cold-induced sweetening in potatoes. American Journal of Potato Research, 78(3), 221-236. DOI: 10.1007/BF02883548

Suttle, J. C., Campbell, M. A., & Olsen, N. L. (2016). Potato tuber dormancy and postharvest sprout control. In S. Pareek (Ed.), Postharvest ripening physiology of crops (p. 449-476). Boca Raton, FL: CRC Press.

United States Department of Agriculture [USDA]. (1967). United states standands for grades of frozen french fried potato. Baltimore, MD: USDA.

Vaughn, S. F., & Spencer, G. F. (1991). Volatile monoterpenes inhibit potato tuber sprouting. American Potato Journal, 68(12), 821-831. DOI: 10.1007/BF02853856

Zommick, D. H., Knowles, L. O., Pavek, M. J., & Knowles, N. R. (2014). In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.). Planta, 239(6), 1243-1263. DOI: 10.1007/s00425-014-2048-8

Published
2019-09-20
How to Cite
Santos, M. N. de S., Araujo, F. F. de, Lima, P. C. C., Costa, L. C. da, & Finger, F. L. (2019). Changes in potato tuber sugar metabolism in response to natural sprout suppressive compounds. Acta Scientiarum. Agronomy, 42(1), e43234. https://doi.org/10.4025/actasciagron.v42i1.43234
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus